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Abstract: We propose an image-based, learned method for selective tabletop ob-1

ject rearrangement in clutter using a parallel jaw gripper. Our method consists of2

three stages: graph-based object sequencing (which object to move), feature-based3

action selection (whether to push or grasp, and at what position and orientation)4

and a visual correspondence-based placement policy (where to place a grasped5

object). Experiments show that this decomposition works well in challenging set-6

tings requiring the robot to begin with an initially cluttered scene, selecting only7

the objects that need to be rearranged while discarding others, and dealing with8

cases where the goal location for an object is already occupied – making it the9

first system to address all these concurrently in a purely image-based setting. We10

also achieve an ∼8% improvement in task success rate over the previously best11

reported result that handles both translation and orientation in less restrictive (un-12

cluttered, non-selective) settings. We demonstrate zero-shot transfer of our sys-13

tem solely trained in simulation to a real robot selectively rearranging up to 1514

everyday objects, many unseen during learning, on a crowded tabletop. Videos:15

https://sites.google.com/view/selective-rearrangement.16

Keywords: Rearrangement, Robot Manipulation, Task and Motion Planning17

1 Introduction18

Figure 1: 15-object selective rearrangement from a cluttered initial state. Given an initial ar-
rangement of everyday objects and an image specifying the goal arrangement, the robot learns to
remove objects that do not need repositioning (1-11) and repositions all other objects accurately
(12-15) as specified by the goal image (top left) resulting in the final arrangement (bottom left).

Repositioning objects to a desired configuration is rooted in the activities of daily living [1]. Many19

skills underlie this capability – extracting useful information from raw perceptual data, performing20

accurate object manipulation, and optimizing long-term sequential action planning – making object21

rearrangement an essential challenge for both robotics and embodied AI [2]. Figure 1 illustrates our22

setting: faced with a tabletop with many everyday objects (clutter) the robot is tasked to rearrange23
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a subset of objects (selectivity) to a goal configuration, while discarding others in a bin. Another24

challenge is in situations where the desired locations for some objects are already occupied (swap).25

Object rearrangement has been studied in the context of both task and motion planning and learning.26

However, existing methods do not concurrently address these three challenges. Our system is the27

first to do so in a purely learned setting where the goal is given by a single RGB-D image.28

In contrast to e.g., suction mechanisms, we work with a parallel jaw gripper requiring object sin-29

gulation before grasping. Our method consists of three stages: graph-based object sequencing that30

picks the next object to manipulate by minimizing the Graph Edit Distance (GED) between the cur-31

rent scene graph and the goal scene graph, feature-based action selection that maps the RGB-D32

image to robot actions (pushing or grasping) through a deep Q-learning framework and a visual33

correspondence-based placement policy that uses the cross-correlation of visual features extracted34

by a pretrained network between the grasped object and the goal specification image to locate ob-35

ject placement. Experiments show that the system successfully rearranges 3-7 objects with higher36

than 90% completion within 2.99 cm error, and rearranges 16-20 objects with higher than 82.33%37

success within 1.64 cm error. We also achieve an ∼8% improvement in task success rate over the38

previously best reported result that handles both translation and orientation in a less restrictive setting39

(uncluttered, non-selective). We demonstrate zero-shot transfer to a real robot (Figure 1) selectively40

rearranging up to 15 everyday objects, many unseen during learning, on a crowded tabletop.41

2 Related Work42

Task and motion planning-based systems (TAMP) [3] either have a high-level task planner and a43

low-level motion planner [4, 5, 6, 7, 8, 9, 10], or use sampling-based algorithms or optimization to44

solve a single unified formulation of the problem [11, 12]. Some TAMP solutions rely on known ob-45

ject models or a known environment [13, 9, 10], which makes it difficult to deploy them with novel46

objects or where explicit object pose estimation is difficult to obtain. TAMP approaches that incorpo-47

rate learning-based vision models, such as [14, 15, 16, 17] can adapt to novel objects/environments48

while [14] is based on one initial scene image, [15] uses structural constrained predicates for plan-49

ning, [16] depends on the knowledge of the environment, and [17] assumes round collision radius50

for all object shapes, making it difficult to scale to adversarial environments (e.g., highly cluttered).51

The number of possible action sequences increases exponentially with the number of objects and52

changes in environment observability increase the difficulty of back-tracking and replanning.53

Method Robot Action Clutter Selectivity
Grasping
DexNet [18] GRASP ✔ ✗
GPD [19] GRASP ✔ ✗
VPG [20] PUSH&GRASP ✔ ✗
Target object retrieval
Mech Search [21] GRASP ✔ ✔
Murali et al. [22] GRASP ✔ ✔
MORE [23] PUSH&GRASP ✔ ✔
Rearrangement
NeRP [24] GRASP ✗ ✗
IFOR [25] GRASP ✗ ✗
TRLB [10] SUCTION ✔ ✗
ReorientBot [26] SUCTION ✔ ✗
Ours PUSH&GRASP ✔ ✔

Table 1: Related Manipulation Tasks

Deep learning-based systems have relaxed54

some of these constraints by incorporating55

learning-based models in perception, planning56

and actuation. They have been shown to learn57

general policies to handle varied rearrangement58

tasks [27, 28, 29, 30, 31, 32, 33], e.g., highly-59

cluttered, partially-observable environments or60

deformable objects. Our work is related to61

learning-based methods for grasping in clut-62

ter [18, 19, 20], target object retrieval [21, 22,63

23], and rearrangement [24, 25, 10, 26] (Ta-64

ble 1). Most related to our work, Zeng et al.65

[20] proposed using deep Q-learning to learn66

synergies between push and grasp actions in order to improve grasping accuracy in densely clut-67

tered environment. Inspired by [20], we adapt collaborative PUSH and GRASP in our system in order68

to deal with highly cluttered environments for object rearrangement tasks. Different from previ-69

ous works, we learn action primitives, distinguish objects to rearrange from those to discard, and70

plan sequential actions simultaneously making this the first work to concurrently solve image-based71

selective object rearrangement in a cluttered tabletop environment.72
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3 Learning a Selective Rearrangement Policy73

Figure 2: System overview. Our system uses RGB-D images as input and builds a scene graph
based on the object segmentation given by UOIS-Net-3D [34]. Graph-based object sequencing
(subsection 3.3) selects the optimal object for next rearrangement and we mask the Q-value map
for GRASP with its segmentation mask. Then the system picks the highest Q-value action candidate
from PUSH and GRASP Q-value maps and executes the action Figure 3a. If GRASP is chosen and
successfully executed, the system locates the PLACE of the grasped object (Figure 3b).

We decompose the rearrangement problem into three parts: object sequencing (which object to re-74

locate next), action selection (how to manipulate it), and object placement (where to place a grasped75

object). We rely on three primitives: pushing objects (PUSH), picking them up (GRASP), and placing76

them at the target locations (PLACE). PUSH and GRASP can be initiated by the robot at any time,77

however PLACE can only be performed if the robot is already holding an object. This suggests a78

natural decomposition into our three part strategy. When the robot is not holding an object, it must79

make a decision on which object to manipulate next (object sequencing). After choosing an object, it80

must decide whether (and how) to push the selected object or whether (and how) to pick it up (action81

selection). When holding an object, it must decide where to place it (object placement). We model82

object sequencing as a supervised learning problem on graph transformations (subsection 3.3), ac-83

tion selection as a Partially Observable Markov Decision Process (POMDP) (subsection 3.1), and84

object placement as a supervised learning problem (subsection 3.2).85

3.1 Feature-based Action Selection: PUSH or GRASP86

The choice of whether to PUSH or GRASP (and at what location and orientation to execute these87

actions) is Markovian since it is based solely on the current state (object poses). Further, the state is88

partially observable – we do not assume the robot has direct access to full state information, it needs89

to be inferred from images. Hence, we formulate the problem of selecting whether to push or pick90

up an object (and at what location and orientation) as a goal-conditioned POMDP.91

A goal-conditioned POMDP is a tuple (S,G,A, p,R,Ω,O, γ, ρ0, ρg) where S is the state space, G92

is the set of goals, A is the action space, p(st+1|st,at) is the time-invariant (unknown) dynamics93

function, R : S ×A→ R is the reward function, Ω is a set of observations, O is a set of conditional94

observation probabilities, γ ∈ [0, 1] is the discount factor, ρ0 is the initial state distribution, and ρg is95

the goal distribution. The objective in goal-conditioned reinforcement learning is to obtain a policy96

π(at|st,g) to maximize the expected sum of rewards E[
∑

tR(st,g)], where the goal is sampled97

from ρg and the states are sampled according to s0 ∼ ρ0, and st+1 ∼ p(st+1|st,at).98

We define the state s as the poses of N objects in the scene. The actions a ∈ A consist of99

the choice of action ψ, end-effector position x and planar orientation θ: a = (ψ, x, θ), ψ ∈100

{PUSH, GRASP} , x ∈ R3, θ ∈ R. We choose a sparse reward for actions - 1.0 for successful GRASP101

and 0.5 for successful PUSH. The higher reward for GRASP incentivizes the robot to prioritize it over102

PUSH when both are available. We consider a PUSH successful if the pixel-wise change in the depth103

image after a PUSH is larger than a pre-defined threshold. The intuition behind designing the PUSH104

reward this way is that we only use it for singulating objects in clutter where direct GRASP is not105

available, not for object rearrangement. A GRASP is considered successful if the antipodal distance106

between the parallel-jaw gripper fingers after a GRASP attempt is higher than a pre-defined thresh-107
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(a) Feature-based Action Selection (b) Correspondence-based Reposition
Figure 3: Subpolicies. (a) A deep Q-learning framework maps the visual observations to actions,
similar to [20]. (b) The grasped object placement is conditioned on the cross-correlation between
the visual feature of the goal scene and the local features of the grasped object.

old. Observation ot is defined as the RGB-D image captured by a statically mounted camera. The108

goal specification og is the RGB-D image of the goal arrangement from the same camera viewpoint.109

Given the current observation ot we use fully convolutional neural networks (FCNs) to model Q-110

functions that estimate the expected reward for each PUSH and GRASP candidate. The deep Q-111

learning framework is shown in Figure 3a. A 121-layer DenseNet [35] pretrained on ImageNet [36]112

is used to extract visual features from raw RGB-D images. In each FCN, we have three 1 × 1113

convolutional layers; we apply batch normalization and ReLU activation before every convolutional114

layer. After FCN, we upsample with bilinear mode to have a pixel-wise Q-value estimate of the115

same size as input images. Each pixel unit in the Q-value map corresponds to the expected reward116

for executing an action at this pixel location. For each action we model end-effector orientation117

by rotating ot to 16 different orientations. Thus we have 32 pixel-wise Q-value maps (16 each for118

PUSH and GRASP). Each represents the Q-value estimate of executing the corresponding action at119

that orientation at all pixel locations. At each timestep t, before the robot chooses the next action,120

we mask all 16 GRASP Q-value maps with the output from the graph-based object rearrangement121

sequencing module (Figure 3b) to rule out objects that do not currently need to be repositioned.122

Following this, the robot picks an action (PUSH or GRASP) with the highest Q-value and executes it123

at the corresponding pixel location and end-effector orientation.124

Loss is calculated by computing the temporal difference (TD) between the estimated reward and the125

actual obtained reward after execution. We only compute the loss for the selected pixel/pose (where126

the robot will take the next action); all other pixels/poses backpropagate with loss 0. We generate127

the label for PUSH at time t, yPUSH
t , by calculating the depth image change after the push – if it is128

higher than a predefined threshold we consider the PUSH successful, yPUSH
t = 0.5. For GRASP, we129

obtain the label at time t, yGRASP
t , via the feedback signal from the gripper, if the antipodal distance130

between parallel jaws is larger than a predefined threshold, we consider the gripper is holding the131

object and hence the GRASP is successful, yGRASP
t = 1. We use a Huber Loss for both PUSH and132

GRASP. For action executed at time t, let yt denote the label, Qt denote the estimated reward. The133

TD is given by |Qt − yt|, and the primitive learning loss is calculated as:134

Lp =

{
1
2 (Qt − yt)2, |Qt − yt| < 1,
|Qt − yt| − 1

2 , otherwise.

3.2 Correspondence-based Reposition: Where to PLACE135

We model finding PLACE pose at time t as a template matching problem [37] conditioned on the
current observation ot, the goal specification og , and the successfully executed GRASP τt−1 at time
t − 1. We use a pretrained ResNet [38] to extract visual feature maps for both ot and og . Let
ϕ(ot) denote the visual feature map for ot. Given the executed GRASP τt−1 = (xt−1, θt−1), where
xt−1 represents the GRASP location and θt−1 represents the end-effector rotation, we crop a vi-
sual feature segment ϕ(ot−1)[τt−1] with a predefined crop window size centered at xt−1, and we
consider ϕ(ot−1)[τt−1] as a template for the grasped object (Figure 3b). The cross-correlation be-
tween ϕ(ot−1)[τt−1] and ϕ(og) outputs a similarity distribution showing the resemblance between
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ϕ(ot−1)[τt−1] and the local features at every placement in ϕ(og):

φsimilarity
t = ϕ(ot−1)[τt−1] ∗ ϕ(og).

Different from [37], we also apply cross-correlation between depth images odepth
g and odepth

t : φdepth
t =136

ϕ(odepth
t ) ∗ ϕ(odepth

g ), which outputs a pixel-wise distribution over the workspace indicating whether137

a pixel location is occupied by objects in the current scene or in the goal scene. The prediction for138

PLACE is given by: φPLACE
t = φsimilarity

t −φdepth
t . By lowering the value for occupied pixels we avoid139

placing the grasped object on top of other objects or at goal positions of other objects. φPLACE
t is140

a pixel-wise prediction and each pixel represents a potential placement for the grasped object; to141

model the end-effector rotation of PLACE, we rotate the current image ot to 16 different orientations142

as input and pick the one with the highest prediction value. The non-occupied location in ϕ(og)143

with the highest cross-correlation value is considered as the best PLACE τ place
t for the grasped object.144

If a match cannot be found in og , i.e. the similarity score is below a predefined threshold for all145

pixel locations, the object is placed aside in the bin. The training loss for PLACE policy learning146

is cross-entropy. The ground-truth goal position and orientation of the grasped object are extracted147

directly from the simulator. We generate the label yPLACE
t by assigning value 1 to the pixel at the goal148

location of the grasped object; all other pixels are set to 0. The learning objective is to maximize149

the visual feature extraction model’s prediction accuracy given a goal image and a template. While150

we rotate the input image in 16 different directions to differentiate placing orientations, only assign151

value 1 for the one with correct goal orientation. The rearrangement loss is calculated as:152

Lr = −yPLACE
t log ϕPLACE

t + (1− yPLACE
t ) log(1− ϕPLACE

t ).

3.3 Graph-based Object Sequencing: Which Object is Next153

Algorithm 1: ACC-GRAPH GENERATION

Input: camera observation O of a scene.
Output: accessibility graph G = (V, E).

1 E ← ∅, V ← ∅,V ′ ← ∅
2 Get segmentation from UOIS-Net-3D(O)
3 Each segmented object maps to v ∈ V ′

4 Create robot vertex vr, V ← {vr}
5 while ∃v ∈ V’ and v /∈ V do
6 for every vi ∈ V do
7 for every vj ∈ V ′ do
8 if linear distance path (vi, vj)

is collision-free then
9 E ← E ∪ {(vi, vj)}

10 V ← V ∪ {vj}
11 V ′ ← V ′ − {vj}
12 return G = (V, E)

Graph Generation We construct an accessibil-154

ity graph representing reachable traversal paths155

from the robot end-effector location to every ob-156

ject. Unlike [39] (which assumes a known geome-157

try for all objects and uses the graph for target ob-158

ject retrieval tasks), we use UOIS-Net-3D [34] to159

provide a set of object segmentation masks from160

raw RGB-D images. We consider each segmented161

object as a vertex v ∈ V in the scene graph and add162

vr as the robot vertex. An edge e ∈ E between a163

pair of vertices means a collision-free end-effector164

path exists between them. The graph generation165

algorithm is shown in algorithm 1. Examples of166

generated scene graphs are shown in the supplement. The traversal path from the robot vertex to167

any object vertex in the generated scene graph captures the shortest path from the robot base to any168

object in the workspace, which includes objects that are blocking the straight line path.169

Algorithm 2: OBJECT REARRANGE-
MENT SEQUENCING

Input: accessibility graphs of the current
and the goal scene, Gt = (Vt, Et)
and Gg = (Vg, Eg).

Output: selected object v ∈ Gt for next
rearrangement.

1 n← Vt.size
2 Initialize an array sim[1, ..., n]← 0
3 for every vi ∈ Vt do
4 Git ← Gt − {vi}
5 sim[i]← Sim GNN(Git , Gg)
6 selected← argmax sim[1, ..., n]
7 return Vt[selected]

Object Sequencing Let ot and og denote the cur-170

rent and the goal scenes, and Gt, Gg denote the171

current and the goal scene graphs. We establish172

a list of sub-graphs of Gt by individually remov-173

ing each vertex and its related edges. We cal-174

culate the similarity between each sub-graph and175

the goal graph through a pretrained SimGNN [40],176

previously shown to be an excellent approxima-177

tor (MSE < 1.18 × 10−3). The graph similarity178

corresponds to the Graph Edit Distance (GED) be-179

tween two graphs G1 and G2 – the number of edit180

operations in the optimal alignment that transform181
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G1 into G2, where an edit operation on a graph is182

an insertion or deletion of a vertex/edge or relabelling of a vertex (two isomorphic graphs have GED183

of 0). The removed vertex, i.e. object, from the highest similarity sub-graph is selected to be re-184

arranged next. The robot thus chooses the object responsible for the largest difference between the185

current scene graph and the goal scene graph, to keep the number of actions towards task completion186

as low as possible. We show the process of choosing next object to rearrange in algorithm 2.187

Loss Calculation We use A∗ to calculate the ground-truth GED between graphs [41], since the188

generated scene graphs are relatively small. To lay the foundation for scaling up to more complex189

scene graphs in the future (where the ground-truth GED might be inaccessible or computationally190

expensive to obtain) we use SimGNN to approximate GED for all scene graphs instead of using the191

ground-truth GED directly. We transform the ground-truth GED betweenG1 andG2 to ground-truth192

similarity labels y in the range (0, 1] [40]:193

y = e−Norm GED(G1,G2) Norm GED(G1, G2) =
GED(G1, G2)

(|G1|+ |G2|)/2

where |G| denotes the number of vertices in G. Let si denote the similarity prediction output be-194

tween Git and Gg from SimGNN and yi, i = 1, ..., N denote the ground-truth similarity label. We195

use the cross-entropy loss for the graph-based object rearrangement sequencing:196

Ls = −
N∑
i=1

[yi log si + (1− yi) log(1− si)].

After selecting an object for rearrangement, its placement is located as described in subsection 3.2.197

4 Evaluation198

4.1 Experimental Results in Simulation199

We use a position controlled Franka Panda arm with a parallel-jaw gripper in Pybullet [42]. A200

simulated RealSense D415 RGB-D camera with resolution 640× 480 is statically mounted. A side201

bin is placed to hold objects removed from the workspace.202

Method Rotation Swap Clutter Selectivity Init. #obj. Goal #obj. Completion ↑ Position Error ↓
NeRP [24] ✗ ✔ ✗ ✗ 3-8 3-8 94.56± 0.73 1.90± 1.30
IFOR [25] ✔ ✔ ✗ ✗ 1-9 1-9 81.80 2.70± 2.30

Ours

✔ ✗ ✗ ✗ 3-7 3-7 96.67± 1.67 1.29± 0.91
✔ ✔ ✗ ✗ 3-7 3-7 90.00± 3.00 2.99± 2.37
✔ ✗ ✗ ✔ 3-7 1-5 97.33± 0.67 1.41± 2.70
✔ ✔ ✗ ✔ 3-7 1-5 97.00± 1.00 1.81± 2.66
✔ ✗ ✔ ✔ 16-20 5-10 85.67± 2.33 1.64± 0.44
✔ ✔ ✔ ✔ 16-20 5-10 82.33± 2.67 1.22± 0.93

Table 2: Task Completion (mean %) and Position Error (10−2m). Init./Goal #obj. indicates
the number of objects in the initial/goal scene respectively. NeRP [24] and IFOR [25] are state-
of-the-art models for image-based tabletop rearrangement. Statistics on both models quoted here
are as reported in their original paper (codebases are not publicly available). NeRP is restricted to
translation in object repositioning. Since we handle both translation and rotation we compare with
IFOR. We achieve a higher task completion (90%) than IFOR (81.8%) in the same setting (reduced
clutter, no selectivity, but swaps may be needed since some target locations are occupied). We also
handle significantly more complex cases than either of the previous models (e.g., last row of the table
shows concurrent challenges handled by our system: high clutter, selectivity, with swaps needed).

We conduct 6 sets of simulation experiments (each with 3 random seeds and 100 episodes) with203

different variations as shown in Table 2. In each episode, we randomly pick 3 ≤ N ≤ 20 objects204

from the YCB dataset [43] and select a subset of the chosen objects to rearrange on the table. Note205

that it is possible to choose allN objects for rearrangement or some subset. Objects to be rearranged206
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(a) 3-7 objects (b) 16-20 objects

Figure 4: Average Planning Steps Tasks with target selection require fewer planning steps, in-
troducing swap actions in the task setting increases planning steps. The number of planning steps
increases as the number of objects in the scene grows.

are placed at random goal positions and orientations and an RGB-D image is captured. This image207

is the goal specification. Next, we randomly reposition and rotate all these objects and add the208

remaining objects (those not designated for rearrangement) at randomly generated positions and209

orientations to the workspace. The resulting scene is the initial state of the episode.210

We add objects in test episodes that the robot had not seen in the training episodes to show the211

system’s adaptability to novel objects. We differentiate the difficulty of rearrangement tasks by212

measuring the degree to which the scene is cluttered, the degree of selectivity (how many of the213

objects are designated for rearrangement), and how many swap actions are needed. (1) Clutter Let214

P = {(x1, y1), ..., (xn, yn)} denote object positions. We define a clutter coefficient:215

c(P) = − log { 1
n

n∑
i

√
(xi − x̂i)2 + (yi − ŷi)2}, x̂i = kNN(y), ŷi = kNN(x),

in which kNN(y),kNN(x) estimates x̂i, ŷi through k-nearest neighbor regression on every other216

object’s position. We consider arrangements with c(P) ≥ 1.0 as ‘cluttered’. Example scenes and217

clutter calculations are in the supplement Appendix A. (2) Selectivity In selective episodes, only a218

proper subset of objects in the initial arrangement is included in the goal arrangement. Hence, the219

system needs to identify which objects are designated to remain on the table before manipulating220

them. (3) Swap Some episodes require swap actions, where the goal positions of certain objects221

are occupied by other objects in the initial arrangement. This requires the robot to first move the222

blocking object and then reposition the original object to be rearranged.223

We evaluate our method with three metrics: (1) Task completion is the percentage of completion224

in all rearrangement episodes. We consider an episode to be complete when all target objects are225

placed within 5 cm from their goal position (consistent with prior work [25]) and all non-target226

objects are placed in the side bin. (2) Position error is the average Euclidean distance between the227

desired target arrangement and the final arrangement achieved. (3) Planning steps is defined as the228

average number of actions the robot takes in each completed episode. It is a measure of the planning229

efficiency of the learned rearrangement policy.230

Our system performs rearrangement in a variety of settings, generalizing readily from 3-20 objects231

(Table 2, Figure 4). Task completion is calculated over all test episodes; planning steps and posi-232

tion error are only reported on successful episodes. The task completion rate decreases as the task233

setting becomes more difficult, the position error is stable across all task settings, which indicates234

an accurate placement prediction from the sub-policy shown in Figure 3b. In selective episodes, our235

system has a higher task completion rate than non-selective episodes when other task settings are the236

same. We ascribe this to the graph-based object sequencing module (subsection 3.3) that prioritizes237
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removing non-target objects over rearranging target objects, thus decreasing the clutter coefficient238

of the current scene and potentially improving the success rate (see supplement Table 2 for details).239

The task completion rate decreases in situations with high clutter and swap actions. With increased240

clutter, it is more difficult to find ’buffer’ locations for objects whose goal positions are occupied by241

other objects or objects that are occupying others’ goal locations.242

NeRP [24] and IFOR [25] are state-of-the-art models for image-based tabletop rearrangement. Like243

IFOR, our method includes planar rotation alignment of objects (examples in supplement subsec-244

tion B.2) while NeRP only considers translations. Thus we compare our results with IFOR and245

show that we achieve a 8.2% higher task completion rate than IFOR in the same task setting at a246

comparable rotation error (ours:13.89◦, IFOR:13.70◦).247

In Figure 4, we observe that when the task setting remains the same, the number of planning steps248

increases as the number of objects increases. When target selection is involved, the number of plan-249

ning steps decreases, as the object sequencing mechanism prioritizes removing non-target objects250

from the table, leaves a more sparse arrangement of objects in the workspace, potentially reducing251

subsequent task difficulty. The introduction of swap actions, however, significantly increases the252

number of planning steps in each task completion. The swap action requires the robot to sample253

‘buffer’ locations for objects whose goal position is occupied, place objects at ‘buffer’ locations,254

remove the ‘placeholder’ objects at their goal positions and then reposition the objects at their goal255

locations. This process naturally adds more required actions towards task completion.256

Two noteworthy recent rearrangement systems are TRLB [10] and ReorientBot [26]. Both rely on257

suction mechanisms to manipulate objects in clutter without the need to singulate them. TRLB relies258

on the initial and goal states being fully specified as object poses with a focus on fast planning for259

rearrangement and ReorientBot relies on the goal state being fully specified as object poses. Our260

task is sufficiently different (gripper instead of a suction mechanism, goal specified only by a single261

image) making a direct comparison between our work and these two systems infeasible.262

4.2 Ablation Studies263

Target Object Selection: In selective rearrangement, the objects in the goal scene (target objects)264

might be a subset of those in the initial scene. We evaluate the significance of using ResNet to obtain265

an accurate visual feature cross-correlation and target object classification by testing 2 different266

encoder-decoder structured visual feature extractors, ResNet [38] and U-Net [44]. We measure267

the match success rate, average position prediction error and target object classification accuracy268

over 100 different initial and goal arrangements. The choice of visual feature extraction model is269

crucial to our entire system because it directly affects the accuracy of target object identification and270

reposition. Our experiments show that the chosen visual feature extraction model (ResNet) achieves271

match success rate of 93.33%, position error within 2.04 cm and target classification accuracy of272

98.58% with 1-20 objects. Further details are in subsection B.3 of the supplement.273

Scene Graph 10 20

N/A 35.13±3.55 45.22±4.70
Position 19.94±4.93 29.29±3.52
Accessibility 15.61±3.84 25.45±3.88

Table 3: Scene Graph Comparisons. Aver-
age planning steps vs. # of objects in the initial
scene. All scenarios have 10 target objects.

Graph-based Object Sequencing: To verify the274

importance of graph-based object sequencing to275

minimize the number of actions, we test two scene276

graph generation methods and measure their im-277

pact on the average number of planning steps.278

We also consider the situation when no sequenc-279

ing mechanism is used (no scene graph) and the280

robot picks the next object only based on PUSH281

and GRASP Q-value estimates. We generate the282

scene graph in two ways; a position-based ap-283

proach which captures the basic spatial relationships among objects and an accessibility approach284

(subsection 3.3 algorithm 1). We perform object sequencing (algorithm 2) given the scene graph Gt285

and the goal scene graph Gg . Compared with no sequencing, using the accessibility graph decreases286

planning steps by 55.56% (10-object rearrangement) and by 43.71% (20-object rearrangement).287
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Compared with the position-based approach, using the accessibility graph decreases planning steps288

by 21.72% (10-object rearrangement) and by 13.11% (20-object rearrangement) thus confirming the289

efficacy of graph-based object sequencing. A detailed analysis is in the supplement subsection B.4.290

4.3 Demonstration on a Physical Robot291

Figure 5: Robot experiments.

We test our system on a Panda robot arm with a292

parallel-jaw gripper, and a statically-mounted RGB-D293

camera overlooking a tabletop to capture an image of294

the workspace (Figure 5). A bin next to the workspace295

holds the redundant (non-target) objects. Objects in-296

cluded in the demonstration vary across experiments,297

including a collection of 20 daily use objects (e.g.298

peanut butter jar, ketchup bottle). The robot demon-299

stration generalizes to novel objects not available dur-300

ing training. We show zero-shot transfer from simulation to real robot setting in the video.301

5 Limitations302

Our system has several limitations. (1) 6 DOF rotation. Our system is limited to planar object ro-303

tations. We do not currently handle 6 DOF object reorientation, and our system is poor at orienting304

natural objects like oranges and apples which are rotationally symmetric. (2) Cluttered final state.305

Even though our method solves difficult rearrangement tasks with cluttered initial object arrange-306

ments, it struggles with scenarios where the desired goal arrangement is cluttered. Not surprisingly,307

this is a significant challenge for other existing systems as well since with a large number of objects308

it turns into a difficult packing or stacking problem. (3) Segmenting objects. Our system is object-309

centric since we use scene segmentation to build scene graphs and sequence objects. Incorrect object310

segmentation results in inaccurate object sequencing leading to performance degradation. (4) Un-311

derlying motion planner limitations. In some experiments, we have experienced difficulties with312

joint limits being reached when the initial grasp for an object turns out to not be feasible for object313

placement in the new location or when the robot carrying an object collides with another object.314

We believe limitations 1,3 and 4 can be addressed respectively by expanding the action space in315

the action selection module, a better camera (or multiple cameras) and better image segmentation316

techniques, and better trajectory-aware obstacle-avoiding planners.317

6 Conclusions318

We proposed an effective image-based learned method for selective tabletop object rearrangement319

in clutter. Our simulated experiments provide evidence that the method works well in challenging320

settings which require the robot to begin with an intially cluttered scence, select only the objects321

that need to be rearranged while discarding others, deal with cases where the target location for an322

object is already occupied - making the system the first of its kind to be able to address all these323

concurently. Ablation studies provide an analysis of system performance. We also demonstrate324

zero-shot transfer of our system to a real robot and generalization to unseen objects.325
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Integrated task and motion planning. Annual review of control, robotics, and autonomous333

systems, 2021.334

[4] A. Krontiris and K. E. Bekris. Dealing with difficult instances of object rearrangement. In335

Robotics: Science and Systems, 2015.336

[5] J. E. King, M. Cognetti, and S. S. Srinivasa. Rearrangement planning using object-centric and337

robot-centric action spaces. In IEEE Intl. Conf. on Robotics and Automation, 2016.338

[6] S. D. Han, N. M. Stiffler, A. Krontiris, K. E. Bekris, and J. Yu. Complexity results and fast339

methods for optimal tabletop rearrangement with overhand grasps. The International Journal340

of Robotics Research, 2018.341
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