
Feature-based Multi-action Tabletop Rearrangement

Bingjie Tang, Gaurav S. Sukhatme

Abstract— The ability to rearrange a physical environment
depends to varying degrees on perceptual skill, the ability
to navigate unstructured environments, manipulate objects
effectively, and long-horizon task planning. Previous studies on
rearrangement are restricted by object-centric assumptions and
either deal with sparse arrangement of objects or do not adapt to
different goal configurations. We propose a feature-based method
that jointly learns two action primitives and a rearrangement
planning policy in a table-top setting. Two separate fully-
connected networks map visual observations to actions and
another deep neural network learns rearrangement planning
conditioned on the goal specification, perceptual input and
selected action primitive. We directly compare our method with
a state-of-the-art model in simulation and achieve comparable
results on general rearrangement tasks. We show that our system
can handle more challenging settings (non-singulated objects
and object swaps) which the state-of-art-model struggles with.

I. INTRODUCTION

Rearrangement is a canonical task that integrates multiple
perception and manipulation skills necessary to build sophisti-
cated robots that can carry out complex tasks with minimum
human supervision in unstructured environments [1]. In this
work, we focus on the tabletop object rearrangement problem,
as represented in Fig. 1.

Previous studies in task and motion planning have explored
this problem while relying heavily on object-centric assump-
tions, e.g. known object models and object segmentation.
However, in real life tasks, robots usually encounter diverse
object shapes and placement densities. In such environments,
the performance of most object-centric methods will be com-
promised, e.g. model-based methods do not generalize well to
novel objects and densely cluttered object arrangements will
result in noisy object segmentation. Therefore, we propose
an end-to-end feature-based approach to learn two action
primitives, and rearrangement planning through trial-and-
error, that can generalize to novel objects and complete
rearrangement tasks in densely cluttered environments.

We jointly learn two action primitives: PUSH and GRASP ,
and a rearrangement PLACE policy in a deep Q-learning
framework. Through pre-trained vision models, we first gen-
erate visual feature maps of the current RGB-D image of the
workspace and the goal specification image. Three separate
deep neural networks are used to predict the pixel-wise Q-
value maps respectively for PUSH actions, GRASP actions and
rearrangement PLACE actions. We incorporate correlation
convolution as part of both the GRASP network and the

Both authors are with the Department of Computer Science,
University of Southern California, Los Angeles, CA 90089.
bingjiet|gaurav@usc.edu. GS holds concurrent appointments
as a Professor at USC and as an Amazon Scholar. This paper describes
work performed at USC and is not associated with Amazon.

Fig. 1: Overview. Given a goal specification image and RGB-
D images of the current scene from the camera, our system
predicts a sequence of actions that can transition the current
object arrangement to the goal configuration.

rearrangement PLACE network which captures the similarity
between the current feature map and the goal feature map
by leveraging spatially-consistent visual representations. We
directly pass the visual feature map for PUSH through a fully
convolutional network (FCN) to get the best pushing pose
that maximizes future grasp success. The GRASP network
picks the best grasp candidates while filtering out grasp poses
for objects that are already at their goal positions based on
the current visual feature map and its correlation with the
goal feature map. The rearrangement PLACE network learns
to predict the best placement location by maximizing the
similarity between local visual features of the grasped object
and the goal visual feature map, while avoiding placement at
positions that are already occupied by objects.

The main contributions of our work are:

• An end-to-end learning-based planning approach with
no object-centric assumptions, e.g. object segmentation,
that maps directly from pixels to actions to reposition
objects and prioritize the rearrangement of objects that
are not at their goal positions.

• Our method achieves comparable results on general
rearrangement tasks with a state-of-the-art model in
simulation. Additionally, it handles more challenging
settings (non-singulated objects and object swaps) which
the state-of-art-model struggles with.

Our system is trained through interacting with simulated
object arrangements under self-supervision. We evaluate
our system on a simulated UR5 robot and demonstrate
rearrangement policies (learned offline in simulation) on a
Franka Panda robot arm.

II. BACKGROUND & RELATED WORK

A. Primitive Learning

Model-based methods for robotic action primitives [2], [3],
[4], have been successful in structured environments, while
heavily relying on known object shapes, poses, or manually-
engineered motion planning. However, manipulating unknown
objects in unstructured environments is a fundamental skill
for general-purpose robots that can carry out long-horizon
complex tasks in different settings. Previous studies focused
on data-driven methods have leveraged deep learning, espe-
cially deep reinforcement learning, for robot object-agnostic
action learning that can generalize to novel objects for a single
action primitive [5], [6], and for synergies between prehensile
and non-prehensile skills [7], [8]. While these learning-
based methods have mainly focused on model accuracy and
efficiency for executing actions (e.g. success rate), as we
will discuss, the learning objective in our system includes
additional prioritization for long-horizon rearrangement tasks.

B. Rearrangement

Rearranging unknown objects in an unstructured environ-
ment reduces to several sub-tasks for the robot: infer informa-
tion from perception, navigate in the environment, manipulate
objects precisely and solve multi-step task planning [1].

In the task and motion planning (TAMP) literature, there
has been significant work on rearrangement tasks that tackles
the planning problem with predefined transformations instead
of perceptual inputs, e.g. push or pick-and-place an object
of known shape and pose [9], [10], [11], [12], [13], [14],
[15]. So called ’end-to-end’ approaches [16], [17] take in
raw sensory input and directly produce actuation commands.
Our work also falls into this category. Vision for robotic
manipulation or task and motion planning initially were
applied for pose estimation and object detection [3], [18],
[4], [19]. End-to-end models that integrate these vision-based,
object-centric methods show great performance and sample
efficiency, but perform poorly when they encounter unknown
objects or adversarial environments due to the object-centric
representations they employ [20], [21], [22]. Other vision-
based end-to-end approaches to multi-step planning tasks
remove object-centric assumptions by leveraging spatially
consistent visual feature correlations [20], [17], [23]. and
learning policies from expert demonstrations.

Our work is most closely related to NeRP [21] wherein
a deep neural network-based approach is proposed that can
rearrange unseen objects on a tabletop. NeRP achieves state-
of-the-art results for tabletop rearrangement, but requires
segmented visual data as input, and struggles when the
scene segmentation quality drops and fails to get object-
correspondence from perceptual data. Our method success-
fully captures feature-correspondence in such scenarios (e.g.
cluttered environments) and completes the task. In contrast
to NeRP, which learns from previously stored expert demon-
strations, our approach learns from sparse reward. Further,
our model is trained only on general rearrangement tasks,
and we show that it generalizes to more challenging settings,

e.g. object swaps and cluttered environments, without explicit
demonstration on such tasks.

III. LEARNING MULTI-ACTION REARRANGEMENT

A. Problem Formulation

We formulate the tabletop rearrangement problem as a
Partially Observable Markov Decision Process (POMDP). A
POMDP is a 7-tuple (S,A,T,R,Ω,O,γ) where s ∈ S denotes
a state and the state space, a ∈ A denotes an action and the
action space, T is a set of conditional transition probabilities
between states, R : S × A → R is the reward function, Ω

denotes a set of observations, O denotes a set of conditional
observation probabilities, and γ ∈ [0,1] is the discount factor.
In this task, we define the state s as the positions and
orientations of objects in the workspace. The actions a ∈ A
consist of the choice of action primitive ψ , the end-effector
position x and orientation θ :

a = (ψ,x,θ),ψ ∈ {PUSH ,GRASP , PLACE } ,x,θ ∈ R3.

The reward function for PUSH and GRASP is a sparse
reward function - 1 for successful grasps and 0.5 for
successful pushes. We consider a GRASP successful if the
antipodal distance between parallel-jaw gripper fingers after
a GRASP attempt is higher than a pre-defined threshold. Since
we only use PUSH to singulate cluttered objects in order
to enable future GRASP actions, and we do not consider
PUSH itself as a rearrangement action, we designed our
PUSH reward to encourage changes in the scene. PUSH is
successful if the pixel-wise difference in the depth image
after it is executed is larger than a pre-defined threshold.
The reward for PLACE is defined as the variance of average
distance to goal positions of all N objects after a PLACE :

rt = (
N

∑
i

dt
i −

N

∑
i

dt−1
i)/N, (1)

where dt
i represents the Euclidean distance between object i’s

current position and its goal position at time t. Observation
ot is defined as the RGB-D image captured by an ego-centric
view camera at time t. For each observation ot , we rotate it
in 16 different directions as input to predict the pixel-wise
Q-value map for executing actions with different orientations.

The goal specification og is given by an RGB-D image of
the goal object arrangement captured by the camera from the
same ego-centric viewpoint. Our model learns to transform
the initial object arrangement to match the goal specification
image with three actions: PUSH , GRASP and PLACE .

B. Learning PUSH & GRASP

Given the current observation of the scene ot , i.e. the RGB-
D image captured by the ego-centric camera at time t, we use
fully-connected neural networks (FCNs) to model Q-functions
that estimate the expected reward for each action candidate.
The network structure is shown in Fig. 2. The 121-layer
DenseNet [24] module contains two separate DenseNets that
are pretrained on ImageNet [25] for RGB and depth feature
extraction respectively. In each FCN module, we have two
1×1 convolutional layers with batch normalization and ReLU

Fig. 2: System overview. Our system takes in current and goal RGB-D image of the workspace and predicts the next action
(i.e. PUSH or GRASP), along with the position and orientation for executing that action.

activation before every convolutional layer. After FCN, we
upsample with bilinear mode to have a pixel-wise Q-value
estimate of the same size as input images. Each pixel unit
in the Q-value map corresponds to the expected reward for
executing an action at this pixel location.

At each timestep t, the robot picks the action with the
highest Q-value and calculates loss by computing the temporal
difference (TD) between the estimated reward and the actual
obtained reward after execution. We only compute the loss
for the selected pixel/pose (where the robot will take the next
action), all other pixels/poses backpropagate with loss 0. We
generate the label yPUSH

t for PUSH at time t by calculating
the depth image difference after executing the action. If the
difference is higher than a predefined threshold we consider
the PUSH successful, i.e. yPUSH

t = 1, otherwise yPUSH
t = 0. For

GRASP , we obtain the label yGRASP
t at time t via the feedback

signal from the gripper, if GRASP is successful, yGRASP
t = 1,

otherwise yGRASP
t = 0. We use Huber Loss for both action

primitives. For the executing action at time t, let yt denotes
the label, Qt denote the estimated reward, the TD is given
by |Qt − yt |, loss is calculated as:

L =

{ 1
2 (Qt − yt)

2, |Qt − yt |< 1,
|Qt − yt |− 1

2 , otherwise.
(2)

Zeng et al. [7] proposed Visual Pushing Grasping (VPG)
which also uses deep neural networks to map visual obser-
vations to PUSH and GRASP actions. VPG [7] is designed
for tabletop decluttering, so its only optimizing objective is
the GRASP success rate. However, for rearrangement tasks,
objects that are already at their goal positions, despite their
GRASP accessibility, should not be repetitively picked up.

Let φ(ot) and φ(og) denote the feature maps of current
image ot and goal image og extracted by separate 121-layer
DenseNets. In our work, to avoid repetitive GRASP actions for
correctly rearranged objects, we calculate the cross-correlation

between ψ(ot) and φ(og):

ϕgrasp = φ(ot)∗φ(og).

Since each pixel represents a grasp candidate, ϕgrasp captures
the similarity between ot and og over all GRASP candidates.
We subtract ϕgrasp from φ(ot) resulting in lower Q-values for
areas that are highly similar to the goal image:

φ
′(ot) = φ(ot)−ϕgrasp. (3)

At locations where objects have been successfully rearranged
(i.e. within error range of their goal positions), ϕgrasp is high
and hence by subtracting ϕgrasp from φ(ot), these locations
have lower Q-values and the robot can avoid grasping these
objects without an extra object sequencing mechanism. We
further pass φ ′(ot) through a FCN to get a pixel-wise Q-
value estimate for GRASP and calculate loss as shown in
Eq.2. By minimizing TD-error between Q-value estimate
and GRASP execution outcome and applying correlation
subtraction (Eq.3) at the same time, the robot learns a
GRASP policy that maximizes the successful grasping while
preventing redundant grasping.

C. Learning PLACE for Rearrangement

Similar to [17], we consider PLACE policy as predicting the
Q-value distribution at time t given the current observation
ot , the goal specification og and the successfully executed
GRASP at time t − 1. If the previous executed action is a
successful GRASP , we automatically assume the next action
is to PLACE the grasped object. If the previous executed action
is not a GRASP or if the previous executed GRASP failed, we
do not execute the PLACE action, and pick the next PUSH or
GRASP based on Q-value predictions.

The PLACE policy objective is to find the best placement
for the grasped object. As shown in Fig.2, we pass the
visual observation at time t −1, i.e. the RGB-D image before
we execute GRASP , and the goal specification og through

separate pretrained 121-layer DenseNets[24] to obtain the
visual feature maps φ(ot−1) and φ(og). Given the executed
GRASP τ

grasp
t−1 , we crop a partial feature map φ(ot−1)[τ

grasp
t−1] on

φ(ot−1) with a predefined crop window size centered at τ
grasp
t−1 .

Intuitively, if φ(ot−1)[τ
grasp
t−1] captures the visual features of

the grasped object, the system can use φ(ot−1)[τ
grasp
t−1] as a

template and find the best matching local features to it in the
goal image. The cross-correlation between φ(ot−1)[τ

grasp
t−1] and

φ(og) can output a feature similarity distribution showing the
resemblance between φ(ot−1)[τ

grasp
t−1] and the local features

at every placement in φ(og):

ϕ
similarity
t = φ(ot−1)[τ

grasp
t−1]∗φ(og).

Different from Zeng et al. [17], we also apply cross-
correlation between only depth images of odepth

g and odepth
t :

ϕ
depth
t = φ(odepth

t)∗φ(odepth
g),

which outputs a pixel-wise distribution over the workspace
indicating whether a pixel location is occupied by objects in
the current scene or in the goal scene. The pixel-wise Q-value
map is calculated by:

ϕ
place
t = ϕ

similarity
t −ϕ

depth
t . (4)

where we avoid placing the grasped object on top of other
objects or at other goal positions corresponding to other
objects by lowering the value for occupied pixels. ϕ PLACE

t
is a pixel-wise Q-value map and each pixel represents a
potential placement for the grasped object. The location in
φ(og) that has the highest similarity and is not occupied
by other objects at the same time is considered as the best
PLACE τ

place
t for the grasped object: τ

place
t = argmaxϕ PLACE

t .
To model the end-effector rotation of PLACE , we rotate the
current image ot in 16 different directions as input and pick
the one with the highest Q-value prediction.

We also use Huber Loss for learning the PLACE policy. The
label yPLACE

t is given by Eq. 1, yPLACE
t > 0 when the robot

moves the object closer to its goal position. The temporal
difference is given by |maxϕ PLACE

t −yPLACE
t |. The loss can be

calculated as same as in Eq. 2. Similar to PUSH and GRASP ,
we only backpropagate the selected pixel with the loss value
and any other pixels backpropagate with loss 0.

IV. EXPERIMENTAL EVALUATION

A. Simulation Configuration

We use a simulated UR5 robot with parallel-jaw gripper
in the CoppeliaSim [26] simulator, as shown in Fig.3.

B. General Tasks

In general task scenarios, we measure our system’s ability
to complete rearrangement tasks with different numbers of
objects and directly compare our results with the state-
of-the-art model NeRP [21]. We generate new training
scenarios following the method described in NeRP. In each
scenario, we generate a new goal arrangement and a new
initial arrangement with randomly picked object positions,
orientations, shapes and colors. We train our system with

Fig. 3: Simulation configuration. A RGB-D camera provides
visual inputs from an ego-centric view of the workspace.

5-object scenarios till convergence over 3000 iterations. In
each iteration, the robot executes one action (e.g. PUSH ,
GRASP , PLACE). We test with novel shapes that the robot
has not seen during training, which shows our model’s ability
to generalize.

Task completion rate and planning steps are measured to
show the system’s ability to finish the rearrangement task
through sequential decision making. We consider an episode
to be complete when the maximum error between any object’s
current position and its goal position is less than 5 cm. This
means at the end of each completed episode, for any object in
the scene, the Euclidean distance between its current position
to its goal position is less than 5cm. We count the average
steps in each completion to show the planning efficiency
of our policy. Table I shows quantitative results over 50
randomly generated test scenarios where we directly compare
our system with the state-of-the-art model NeRP. In terms
of task completion rate, we are competitive with NeRP in
scenes with fewer objects and we outperform NeRP when
the workspace becomes more cluttered (i.e. more objects in
the scene). However, our system plans and executes more
steps compared to NeRP due to collaborative PUSH actions
and failed GRASP attempts. We further evaluate and discuss
PUSH and GRASP as action primitives in Sec.IV-E.0.a.

Model NeRP [21] Ours

Obj. Completion Steps Completion Steps

3 98.25 ± 0.57 4.58 ± 0.82 97.46 ± 0.85 5.37 ± 0.09
4 97.60 ± 1.20 5.70 ± 1.38 95.34 ± 1.57 9.02 ± 1.18
6 98.09 ± 0.40 8.69 ± 2.15 92.50 ± 1.11 9.30 ± 0.50
7 90.62 ± 1.03 9.47 ± 2.23 93.75 ± 1.28 12.57 ± 2.18

TABLE I: Comparison with NeRP. Both models trained on
random rearrangement of 5 objects. NeRP statistics from [21].

C. Challenging Tasks: Swap

In this task setting the goal positions of certain objects
are occupied by other objects in the initial arrangement. This
requires the robot to first move the “placeholder” and then
reposition the object to its goal position.

Fig. 4: Swapping two objects. In this 3-object scenario, we intentionally set the green object and the blue object to occupy
each others’ goal positions in the initial arrangement. Therefore the robot needs to swap these two objects.

We test our model with 3-object scenarios where the first
object and the second object always occupy each others’
goal positions in the initial arrangement. A third object is
added to the scene for a sanity check. Since the goal position
of the third object is unoccupied, the robot is expected to
successfully rearrange it. In each scenario, we generate a
new goal arrangement for all three objects and obtain a new
initial arrangement by switching the positions of the first two
objects, and randomly choosing the third object’s initial pose.

We evaluate our model over 50 test scenarios, and report
the average task completion rate and planning steps in Table
II. We also show an example completion of our model in Fig.
4. With 62.5% task success rate, our model can complete the
3-object rearrangement task within 5.60 steps. Note that with
the swapping action required, for 3-object rearrangement tasks
the optimal solution costs 4 steps. As stated in Sec. III, our
system only models the rotation of end-effector for PLACE in
the xy-plane. Therefore, when an object’s orientation changes
in the xz-plane or the yz-plane, such as the brown object
shown in Fig. 4, our model cannot adjust it to the exact goal
configuration shown in the goal image.

D. Challenging Tasks: Clutter

In this task setting we start with initial configurations of
objects that are densely cluttered. This requires the robot
to use PUSH actions to singulate objects and prioritize
rearrangement for already singulated objects. In object-
centric methods, densely cluttered scenes usually result
in noisy object segmentation which severely lowers the
performance of these algorithms and grasp-only systems
struggle when no feasible grasp pose is available in a densely
cluttered environment. Our system addresses this challenge
by leveraging PUSH actions that singulate objects from clutter
for future GRASP success.

Let O be an object arrangement and {(x1,y1), ...,(xn,yn)}
denote n objects’ position in O, To distinguish if an object
arrangement is cluttered, we define the clutter coefficient of
an object arrangement O as c(O):

c(O) =− log{1
n

n

∑
i
(yi − ŷi)}, ŷi = kNN(xi)

in which kNN(xi) estimates yi through k-nearest neighbors
regression on every other object’s position in the scene. Clutter
coefficient is calculated as the negative logarithm of the mean
squared error (MSE) for all predictions ŷi. When objects
are closer to each other (i.e. the scene is more cluttered),

(a) 1.69, non-clutter (b) 1.82, non-clutter (c) 2.54, clutter

Fig. 5: Measuring clutter. 3 example arrangements with
clutter coefficient values.

MSE decreases and c(O) increases. We consider object
arrangements with c(O)≥ 2.0 (MSE< 0.01) as ’cluttered’. 3
example object arrangements are shown in Fig. 5.

To test our model’s ability to rearrange from a cluttered
initial configuration, in each test scenario, we randomly pick
5 shapes and colors, generate a random goal arrangement Og
and an initial arrangement O0 with c(O0)≥ 2.0. We test our
system on 50 5-object test scenarios; the results are reported
in Table II. We achieve 86.67% average task success rate
within 10.46 planning steps. The average number of planning
steps increases compared to the general tasks because there
are collaborative PUSH actions involved in the task completion.
An example clutter rearrangement is shown in Fig.6.

Task Success Rate (%) Planning Steps

Swap 62.50 ± 1.21 5.6 ± 0.34
Clutter 86.67 ± 1.42 10.46 ± 1.19

TABLE II: Quantitative evaluation results for challenging
rearrangement tasks. Our model is not re-trained on these
specific settings, we use the same model trained with general
5-object scenarios. NeRP [27] does not report swap scenario
statistics, making a direct comparison infeasible.

E. Ablation Studies

We conduct ablation studies that explore different vision
models for visual feature extraction and substantiate the
necessity of correlation subtractions in our system.

a) Visual Feature Extractors: We believe the quality of
visual features directly affects the model’s accuracy for action
execution. With three different vision models, we evaluate
their impact on our system by general GRASP success rate and
GRASP success rate after PUSH . General GRASP success rate
is defined as the ratio of successful GRASP in all GRASP at-
tempts. This is a measure of the accuracy of the GRASP policy.

Fig. 6: Rearranging in clutter. 4 objects are clustered together (clutter coefficient: 2.04) so a pre-grasp PUSH is required.

GRASP success rate after PUSH is defined as the ratio of
successful grasps executed directly after a PUSH action, which
indicates the potential benefits to GRASP success via helpful
PUSH actions that precede them. PLACE as an action primitive
is not directly evaluated for accuracy because we assume the
robot can always successfully release the grasped object at
a given location. However, the quality of PLACE prediction
can be inferred from results shown in Sec.IV-B. General
GRASP success rate and GRASP success rate after PUSH over
the training process are shown in Fig. 7a. In Fig. 7a, we
observe that VGG16 [28] has significantly lower GRASP suc-
cess rate than ResNet50 [29] and DenseNet121 [24]. Both
ResNet50 and DenseNet121 converged after 1500 iterations
and reached ∼ 80% GRASP success rate. Only DenseNet121
shows improvement in GRASP success rate after PUSH ,
indicating its ability to learn a collaborative PUSH policy.
We also report the average testing GRASP success (GS) and
GRASP success rate after PUSH in Fig. 7b. There is no
significant difference in average GRASP success rate between
ResNet50 and DenseNet121; we pick DenseNet121 [24] as
our visual feature extractor due to its higher GRASP success
rate after PUSH so our model can solve cluttered scenarios
where PUSH actions are needed to singulate objects. With
an average GRASP success of 81.8% with DenseNet121 (Fig.
7b) and included collaborative PUSH actions, we expect the
number of planning steps executed by our model to be higher
than NeRP since the accuracy of executing GRASP actions
and the number of PUSH actions can both potentially affect
the number of planning steps in each task completion.

(a) training (b) testing

Fig. 7: Quantitative evaluation results (%) for PUSH and
GRASP with different visual feature extraction models. All
vision models are pre-trained on ImageNet[25].

b) Correlation Subtraction: To demonstrate the neces-
sity of applied correlation subtractions for GRASP (Eq.3) and
PLACE (Eq.4), we conduct two separate ablation studies where
we remove each correlation subtraction. In Figs.8 and 9, the
heatmaps’ rotation models the end-effector orientation when
executing GRASP or PLACE . The centers of the red circles
are the highest Q-value pixel locations in the heatmaps. An
example of removing the GRASP correlation subtraction in
Eq.3 is shown in Fig.8. Without Eq.3, the robot repeatedly
grasps the green object due to its highest GRASP Q-value
even though it is within the predefined error range from its
goal position and there are other graspable objects that are
not rearranged. By adding GRASP correlation subtraction, the
brown object, which is not previously rearranged, becomes
the highest GRASP Q-value object. We show an example of
skipping the PLACE correlation subtraction in Eq.4 where we
directly use ϕ

similarity
t as PLACE Q-value estimate in Fig.9.

Without Eq.4, the robot causes the brown and blue objects
to collide since the goal position of the brown object is
blocked by the blue object. However, by applying Eq.4, we
avoid collision by placing the brown object at an intermediate
position that is unoccupied and near its goal position.

Fig. 8: Correlation subtraction for GRASP . The GRASP Q-
value estimate for the green object remains the highest even
though it is already at its goal position.

Fig. 9: Correlation subtraction for PLACE . The robot
picks the brown object for rearrangement. Without Eq.4, the
placement (at red circle) will collide with the blue object.

F. Real Robot Demonstration

We illustrate the execution of the system on a Franka Panda
robot with a parallel-jaw gripper (Fig.1) wherein the arrange-
ments and action trajectories in the real robot demonstration
are collected in simulation (the robot demonstration is thus
an example execution trace of a plan learned offline).

V. CONCLUSION AND FUTURE WORK

We presented a feature-based end-to-end approach to rear-
range objects of unknown shape on an open tabletop with two
jointly-learned transformations PUSH and GRASP and a learned
rearrangement PLACE policy from visual input. Our model
trains through a deep Q-learning framework while leveraging
the spatial consistency in visual features. It shows competitive
results with the state-of-the-art object-centric method and
generalizes to more challenging rearrangement tasks including
swapping objects, and repositioning dense non-singulated
cluttered arrangements. Our model is limited to positions and
orientations in the xy-plane which results in misalignment
around the z-axis at the goal pose. We plan to address this in
future work and are actively exploring extending our vision-
only method to incorporate other perceptual modalities to
tackle more challenging settings.

REFERENCES

[1] D. Batra, A. X. Chang, S. Chernova, A. J. Davison, J. Deng, V. Koltun,
S. Levine, J. Malik, I. Mordatch, R. Mottaghi, M. Savva, and
H. Su, “Rearrangement: A challenge for embodied ai,” ArXiv, vol.
abs/2011.01975, 2020.

[2] K. M. Lynch, “Estimating the friction parameters of pushed objects,” in
Proceedings of 1993 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 1993.

[3] Y. Yoon, G. N. DeSouza, and A. C. Kak, “Real-time tracking and pose
estimation for industrial objects using geometric features,” in 2003
IEEE International Conference on Robotics and Automation (Cat. No.
03CH37422), 2003.

[4] M. Zhu, K. G. Derpanis, Y. Yang, S. Brahmbhatt, M. Zhang, C. Phillips,
M. Lecce, and K. Daniilidis, “Single image 3d object detection and
pose estimation for grasping,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA), 2014.

[5] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for
physical interaction through video prediction,” in Proceedings of
the 30th International Conference on Neural Information Processing
Systems, 2016.

[6] A. Mousavian, C. Eppner, and D. Fox, “6-DOF GraspNet: Variational
grasp generation for object manipulation,” in IEEE/CVF International
Conference on Computer Vision, 2019.

[7] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2018.

[8] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Scalable deep reinforcement learning for vision-based robotic manip-
ulation,” in Proceedings of The 2nd Conference on Robot Learning,
2018.

[9] O. Ben-Shahar and E. Rivlin, “Practical pushing planning for rear-
rangement tasks,” IEEE Transactions on Robotics and Automation,
1998.

[10] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push planning
for object placement on cluttered table surfaces,” in 2011 IEEE/RSJ
international conference on intelligent robots and systems, 2011.

[11] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” in Proceedings 2007 IEEE
international conference on robotics and automation, 2007.

[12] S. D. Han, N. M. Stiffler, A. Krontiris, K. E. Bekris, and J. Yu,
“Complexity results and fast methods for optimal tabletop rearrangement
with overhand grasps,” The International Journal of Robotics Research,
2018.

[13] S. H. Cheong, B. Y. Cho, J. Lee, C. Kim, and C. Nam, “Where
to relocate?: Object rearrangement inside cluttered and confined
environments for robotic manipulation,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020.

[14] R. Wang, K. Gao, D. Nakhimovich, J. Yu, and K. E. Bekris,
“Uniform object rearrangement: From complete monotone primitives to
efficient non-monotone informed search,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021.

[15] K. Gao, D. Lau, B. Huang, K. E. Bekris, and J. Yu, “Fast high-quality
tabletop rearrangement in bounded workspace,” in IEEE International
Conference on Robotics and Automation, 2022.

[16] M. Danielczuk, A. Kurenkov, A. Balakrishna, M. Matl, D. Wang,
R. Martı́n-Martı́n, A. Garg, S. Savarese, and K. Goldberg, “Mechanical
search: Multi-step retrieval of a target object occluded by clutter,” in
2019 International Conference on Robotics and Automation (ICRA),
2019.

[17] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian,
T. Armstrong, I. Krasin, D. Duong, V. Sindhwani, and J. Lee, “Trans-
porter networks: Rearranging the visual world for robotic manipulation,”
Conference on Robot Learning (CoRL), 2020.

[18] M. Gupta, J. Müller, and G. S. Sukhatme, “Using manipulation primi-
tives for object sorting in cluttered environments,” IEEE Transactions
on Automation Science and Engineering, 2015.

[19] X. Deng, Y. Xiang, A. Mousavian, C. Eppner, T. Bretl, and D. Fox,
“Self-supervised 6d object pose estimation for robot manipulation,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020.

[20] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese,
and J. C. Niebles, “Neural task graphs: Generalizing to unseen tasks
from a single video demonstration,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

[21] A. Qureshi, A. Mousavian, C. Paxton, M. Yip, and D. Fox, “Nerp:
Neural rearrangement planning for unknown objects,” in Proceedings
of Robotics: Science and Systems, 2021.

[22] A. Goyal, A. Mousavian, C. Paxton, Y.-W. Chao, B. Okorn, J. Deng,
and D. Fox, “Ifor: Iterative flow minimization for robotic object
rearrangement,” arXiv preprint arXiv:2202.00732, 2022.

[23] A. Ganapathi, P. Sundaresan, B. Thananjeyan, A. Balakrishna, D. Seita,
J. Grannen, M. Hwang, R. Hoque, J. E. Gonzalez, N. Jamali, K. Yamane,
S. Iba, and K. Goldberg, “Learning to smooth and fold real fabric
using dense object descriptors trained on synthetic color images,” in
International Conference on Robotics and Automation (ICRA), 2021.

[24] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in neural
information processing systems, 2012.

[26] E. Rohmer, S. P. N. Singh, and M. Freese, “Coppeliasim (formerly
V-REP): a versatile and scalable robot simulation framework,” in Proc.
of The International Conference on Intelligent Robots and Systems,
2019.

[27] A. H. Qureshi, J. Dong, A. Choe, and M. C. Yip, “Neural manipulation
planning on constraint manifolds,” IEEE Robotics and Automation
Letters, 2020.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

