
AutoMate: Specialist and Generalist Assembly
Policies over Diverse Geometries

Bingjie Tang1, Iretiayo Akinola2, Jie Xu2, Bowen Wen2, Ankur Handa2, Karl Van Wyk2,
Dieter Fox2,3, Gaurav S. Sukhatme1, Fabio Ramos2,4, Yashraj Narang2

1University of Southern California, 2NVIDIA Corporation, 3University of Washington, 4University of Sydney

Robot Trajectory

Dataset & Environments Generalist

…

Specialist Real-world Deployment

Disassembly Trajectory

Dynamic Time
Warping

Imitation
Reward

DAgger

Behavior Cloning

Parts

Robot Setup Successful Assemblies

On-policy RL+Imitation Objective

Assembly-by-Disassembly

Generalist πg

Supervised Learning RL Fine-tuning

ActionReward

Simulation

Sampling-based
Curriculum

 Rolloutsπs

 Actionsπs

 Rolloutsπg

 Actionsπg

Fig. 1: We present A) a dataset of 100 interpenetration-free assemblies that can be simulated in robotics simulators and assembled in the real world, as well
as simulation environments for all 100 assemblies in [49, 57]; B) specialist (i.e., part-specific) policies trained with a novel approach combining assembly-by-
disassembly, RL with imitation, and dynamic time warping, which can solve 80 assemblies with ≈80%+ success rates; C) a generalist (i.e., unified) policy
trained with policy distillation and RL fine-tuning, which can solve 20 assemblies with 80%+ success rates; and D) zero-shot sim-to-real transfer of the
specialist and generalist policies, including perception-initialized deployments. During evaluations, we execute 5M+ simulated trials and 500 real-world trials.

Abstract—Robotic assembly for high-mixture settings requires
adaptivity to diverse parts and poses, which is an open challenge.
Meanwhile, in other areas of robotics, large models and sim-to-
real have led to tremendous progress. Inspired by such work,
we present AutoMate, a learning framework and system that
consists of 4 parts: 1) a dataset of 100 assemblies compatible with
simulation and the real world, along with parallelized simulation
environments for policy learning, 2) a novel simulation-based
approach for learning specialist (i.e., part-specific) policies and
generalist (i.e., unified) assembly policies, 3) demonstrations of
specialist policies that individually solve 80 assemblies with
≈80%+ success rates in simulation, as well as a generalist policy
that jointly solves 20 assemblies with an 80%+ success rate, and
4) zero-shot sim-to-real transfer that achieves similar (or better)
performance than simulation, including on perception-initialized
assembly.1 The key methodological takeaway is that a union of
diverse algorithms from manufacturing engineering, character
animation, and time-series analysis provides a generic and robust
solution for a diverse range of robotic assembly problems. To
our knowledge, AutoMate provides the first simulation-based
framework for learning specialist and generalist policies over a
wide range of assemblies, as well as the first system demonstrating
zero-shot sim-to-real transfer over such a range. For videos and
additional details, please see our project website.

I. INTRODUCTION

Most objects in home and industrial settings consist of
multiple parts that must be assembled [90]. Human workers
typically perform assembly; however, in certain industries
(e.g., automotive), robotic assembly is prevalent. As industrial
robots typically use stiff controllers and perform repetitive

1We use zero shot to refer to sim-to-real without a real-world adaptation
phase, and perception-initialized to refer to assembly that requires perception,
grasping, and insertion (rather than starting from a pre-grasped state).

motions, robotic assembly requires highly-customized engi-
neering of fixtures, tooling, and waypoints. Nevertheless, in
high-mixture settings, adaptive assembly is required [37], in
which robots must assemble parts with diverse geometries and
poses. Adaptive assembly is non-trivial even for skilled human
workers and is a major open challenge in robotics.

Meanwhile, in other areas of robotics, large models and sim-
to-real methods have led to tremendous progress. Large lan-
guage, vision, and visual-language models have led to vision-
language-action models with high-level reasoning and multi-
task performance [6, 7, 43, 68]. Fast simulators ([49, 54, 84])
and domain adaptation ([60, 66, 83]) have enabled robust
policies for locomotion [41, 70] and manipulation [2, 28]. Nev-
ertheless, large models and sim-to-real are extremely nascent
for contact-rich tasks in industrial settings, including assembly.
Prior research has often focused on training specialist (i.e.,
part-specific) policies for 1-5 parts (up to a max of 15-20 parts
[74, 75]), and simulation-based development and transfer of
generalist (i.e., unified) policies has not been explored. Fur-
thermore, the first zero-shot sim-to-real transfer for perception-
initialized assembly has only recently been demonstrated [77].

In this context, we present AutoMate, a learning framework
and system for solving diverse assembly problems with spe-
cialist and generalist policies, in simulation and with zero-shot
transfer to reality (Figure 1). Our specific contributions are:

• Dataset and Environments: We provide a dataset of 100
assemblies based on [81] (but interpenetration-free and
with realistic clearances), as well as parallelized simula-
tion environments for all 100 assemblies. The datasets
and environments provide researchers with a platform
for developing policies for a wide range of realistic and

https://bingjietang718.github.io/automate/

realizable (i.e., 3D-printable) assembly problems.
• Learning Methods: For training specialists, we pro-

pose a novel approach combining 3 distinct algorithms:
assembly-by-disassembly, reinforcement learning (RL)
with an imitation objective, and dynamic time warping.
These approaches are a synthesis of diverse algorithms
from distinct fields, including manufacturing engineering,
character animation, and time-series analysis. For training
a generalist, we apply geometric encoding, policy distil-
lation, and curriculum-based RL fine-tuning.

• Specialist and Generalist Policies: We use our dataset,
environments, and methods to learn specialist policies in
simulation that can individually solve 80 assemblies with
≈80%+ success rates over 500k trials. We also learn a
generalist policy in simulation that can jointly solve 20
assemblies with an 80%+ success rate over 100k trials.
These results demonstrate that our learning approaches
are a generic procedure for solving diverse assembly
problems in both a part-specific and unified manner.

• Sim-to-Real: We design and demonstrate a real-world
system that can deploy our specialist policies in zero-
shot with 86.5% success rates over 20 assemblies and
200 trials, and our generalist policy in zero-shot with an
84.5% success rate over 20 assemblies and 200 trials. We
also execute perception-initialized assembly with 86.0-
90.0% success rates over 5 assemblies and 100 trials.
These results demonstrate that our learning approaches,
when combined with state-of-the-art sim-to-real methods,
can produce real-world outcomes that are equivalent to
(and sometimes better than) those in simulation.

We present the above in Sections IV, V, VI, and VII.
To our knowledge, AutoMate provides the first simulation-

based framework for learning specialist and generalist policies
over a wide range of assemblies, as well as the first system
demonstrating zero-shot sim-to-real transfer over such a range.
Through this work, we aim to gradually build towards the
large-model paradigm for industrial robotics, while staying
grounded in real-world deployment. We commit to releasing
our dataset, environments, and algorithm implementations in
the hope of driving forward robotic-assembly research.

II. RELATED WORKS

Research in robotic assembly has recently experienced
significant growth, as described in [54, 77, 81, 97]. We focus
our review on 1) datasets and benchmarks for assembly of
small, realistic parts, 2) our building blocks for learning
specialist assembly policies (i.e., assembly-by-disassembly,
RL with imitation, and dynamic time warping), 3) our core
technique for learning a generalist assembly policy (i.e., policy
distillation), and 4) sim-to-real transfer for assembly.

A. Assembly Datasets and Environments

There are few existing datasets and environments for assem-
bling small, realistic parts in simulation and the real world.
Simulation efforts include [92], a large-scale CAD dataset for
realistic assemblies; [81], which provides a version suitable

for research; [54], which provides simulation environments for
peg, gear, and connector insertion, and [77], which provides
similar environments, as well as a real-world benchmarking
kit [78]. The most established real-world effort is [36, 37],
a benchmark for tasks such as connector insertion, pulley
alignment, and cable weaving, as well as a small dataset of
CAD models, STL files, images, and point clouds [58]. Finally,
other research efforts have provided datasets and environments
for additional assembly domains (e.g., [15, 29, 42]).

Among these efforts, the state-of-the-art may be considered
[81] for CAD datasets, [29, 54] for simulation environments,
and [36] for real-world benchmarks. Our work draws upon
the strengths of each by providing 1) a diverse CAD dataset
of 100 interpenetration-free assemblies based on [81], 2)
ready-to-use, parallelized simulation environments for all 100
assemblies in [49, 57], and 3) a real-world benchmarking
kit corresponding to the environments. These components
comprise the first unified dataset and environments for sim-
to-real transfer for robotic assembly at an appreciable scale.

B. Learning Specialist Assembly Policies

There are few directly-comparable works for learning spe-
cialist policies for assembling a large number of diverse parts
(here, 100). Recent efforts have focused on perception [21, 22,
51, 88] or planning [81, 82] without learning policies robust
to disturbances and noise, or learning policies for a small
number of assemblies (1-5), with just a few effort attempting
>10 assemblies [74, 75, 98]. Thus, we instead review works
addressing challenges that we faced when learning specialist
policies: 1) generating demonstrations for robotic assembly
in simulation, 2) augmenting RL with demonstrations, and 3)
selecting relevant demonstrations to use during learning.

For (1), the prevailing approach is assembly-by-disassembly
(i.e., generating disassembly sequences/paths and reversing
them for use in assembly), which was developed in the context
of manufacturing engineering [18]. State-of-the-art tree search
methods for this process are proposed in [81, 82]. Importantly,
physical laws dictate that only sequences and paths can be
reversed (rather than velocities and accelerations) [91].

For (2), there is a diverse set of effective approaches,
including bootstrapping RL with behavior-cloned policies [65],
adding demonstrations to the replay buffer for off-policy
RL [86], augmenting the policy gradient for on-policy RL
[65], learning a reward function from demonstrations [56] or
human preferences [14], and explicitly including an imitation
objective in the reward function for on-policy RL [59, 61],
which was proposed in the character-animation literature.

Finally, for (3), the simplest approach is to select the
demonstration closest to the initial position of the end effector.
However, as we show, selecting the closest demonstration to
the current position at each timestep produces more robust
behavior, and selecting the closest demonstration to the history
of positions (i.e., the end-effector path) is even more effec-
tive. Matching paths of varying lengths and discretizations
is a well-known challenge; two state-of-the-art methods are
dynamic time warping (DTW) [5] and signature transforms

[35], mathematical techniques that were first applied to time-
series analysis in speech recognition [72] and finance [27].

Our work combines the strengths of the preceding works
by proposing a novel approach combining 3 algorithms: 1)
assembly-by-disassembly, 2) RL with an imitation objective,
and 3) trajectory matching via DTW. We select (2) for its sim-
plicity and demonstrated effectiveness, and uniquely formulate
our imitation objective to imitate paths rather than states or
state-action pairs, and we select (3) based on subsequently-
described evaluations. This combination enables effective
training of specialist policies for ≈80% of our assemblies.

C. Learning Generalist Assembly Policies

There are few directly-comparable works for simulation-
based learning of generalist policies for assembling a large
number of parts. We instead contextualize our core technique
for learning a generalist policy: policy distillation.

As described in Section I, large models have led to tremen-
dous progress in robotics, including multi-task performance.
Whereas such models often call existing skills or train from
scratch, we aim for a middle ground by leveraging knowledge
from specialist policies via distillation. In machine learning,
distillation refers to compressing a neural network by trans-
ferring knowledge from a larger teacher network to a smaller
student network [8, 30]; in deep RL, policy distillation applies
this idea to policy networks that map observations to actions
[71]. In robotics, there are two main variations of policy
distillation: 1) cross-modal distillation: transferring knowledge
from a teacher policy with privileged information (e.g., 6-DOF
poses) to a student policy with realistic sensory inputs (e.g.,
proprioceptive data, RGB images) [1, 9, 11, 41, 94], and 2)
multi-task distillation (a.k.a., generalist-specialist learning):
transferring knowledge from multiple task-specific teachers to
a single student [23, 33, 87]. Knowledge transfer is typically
achieved via behavior cloning (BC) [63] and/or DAgger [69].

Inspired by [87], which focuses on grasping in simulation,
our work leverages multi-task distillation to train our generalist
policy from our specialist policies via BC, DAgger, and RL
fine-tuning. In contrast, our work avoids the engineering com-
plexity of [87], applies these techniques to robotic assembly,
and deploys the learned generalist policy for the first time in
the real world (as opposed to simulation only).

D. Sim-to-Real Transfer for Assembly

There have been numerous sim-to-real efforts for robotic
assembly, which have used simulation to enable rapid devel-
opment, safe policy learning, and scalable experimentation.
[77] reviews prior studies in detail and notes that most
involve large parts or clearances, use specialized fixtures or
adapters, require human demonstrations, and/or require real-
world policy adaptation. We briefly review more recent efforts.

[77] demonstrates zero-shot sim-to-real for perception-
initialized assembly on 9 tasks derived from [36]. They
propose algorithms to overcome sim-to-real gap, including
SAPU (penalizing interpenetration error during training) and
PLAI (integrating actions to reduce steady-state error during

deployment). [97] demonstrates sim-to-real with pregrasped
parts and a real-world adaptation phase for 6 assemblies.
They learn velocity targets and admittance gains for motion
primitives in simulation and optimize gains online during
deployment. [82] demonstrates sim-to-real for one 5-part as-
sembly. They develop sequence and path-planning algorithms
and execute the demonstration with precisely-fixtured parts.
[96] demonstrates zero-shot sim-to-real with pregrasped parts
for 6 assemblies. They train a policy in simulation to collect
a dataset, which is used to train a planner and gain tuner via
supervised learning; the planner and tuner are deployed in the
real world.

Our work primarily applies the sim-to-real methods de-
scribed and implemented in [77, 79] and requires no human
demonstrations or policy adaptation. However, we substan-
tially reduce the remaining human effort required by allowing
plugs to be placed haphazardly on a platform or in the robot
gripper, using a second gripper to grasp the sockets (rather than
bolting them to a flat surface), optimizing grasp poses (rather
than manually specifying grasp heights), performing 6D pose
estimation (rather than detection) during perception-initialized
deployments, and using identical control gains and action
scales (rather than task-specific scales) for all assemblies.

III. PROBLEM DESCRIPTION

Our fundamental task is to use off-the-shelf, research-grade
robot hardware to assemble a wide range of assemblies. Unlike
most prior efforts, the assemblies consist of small parts with
diverse geometries, the parts are initialized with appreciable 6-
DOF pose randomization, no part-specific adapters or fixtures
are leveraged, and no force-torque sensor is used.

Specifically, our experimental setup consists of 1) a Franka
Panda robot with shore 30A finger pads mounted to a tabletop,
2) a wrist-mounted Intel RealSense D435 RGB-D camera,
3) a 3D-printed plug and socket2 with 0.5-1.0 mm diametral
clearances, and 4) a Schunk EGK40 gripper with shore 40A
gripper pads mounted to the tabletop (akin to [32]). At the
beginning of each experiment, the plug is haphazardly pressed
into a foam block or placed in the robot gripper, and the socket
is haphazardly placed in the Schunk gripper3 (Figure S11).

We assume that 1) each assembly consists of 2 parts (thus,
free from sequence planning [81]), 2) all parts have a size
and initial position and orientation such that ≥1 grasp is
feasible and ≥1 feasible grasp is sufficient to allow subsequent
insertion (i.e., regrasping is not necessary), 3) a mesh file is
available for each part, which is typical for industrial assembly
applications, 4) the end effector can perform assembly in
an approximately top-down configuration (i.e., within a 30◦

cone), which is also typical for many applications.
For a formal problem statement, see Appendix B.

2We use plug to refer to a part that must be inserted, and socket to refer
to a part that mates with the plug.

3Assembly tasks performed by humans typically require two hands, one
for manipulation and the other for stabilization; the Schunk gripper allows us
to stabilize the socket without incurring the cost of a second robot arm.

IV. DATASET AND ENVIRONMENTS

Our first contribution is a dataset of 100 assemblies com-
patible with both simulation and the real world, as well as
parallelized simulation environments for all 100 assemblies.
The key takeaway is that researchers can use these datasets and
environments to develop policies for a wide range of realistic
and realizable (i.e., 3D-printable) assembly problems.

A. Assembly Dataset

As described in Section II-A, [92] provides a large-scale
CAD dataset of realistic assemblies, and [81] refines the
dataset for research. However, most meshes still have nonzero
interpenetration when assembled; thus, they are incompatible
with simulators that enforce non-penetration constraints (e.g.,
[49]) and are infeasible to assemble in the real world.

We sample 100 assemblies from [81] that consist of 2 parts,
are geometrically diverse, have graspable surfaces, require
insertion (rather than simply alignment), and can be assembled
approximately top-down. Most assemblies have 1 axisymmet-
ric part; however, the part frequently has a symmetry-breaking
feature. We perform several operations on these meshes:
scaling, reorientation, translation, depenetration, chamfering
(optional), and subdivision; for details, see Appendix C. Most
critical is depenetration, where we 1) place each plug and
socket in their assembled configuration, 2) compute the signed
distance from each plug vertex to the surface of the socket
[46], and 3) translate each vertex along its closest face normal
until achieving a radial clearance of 0.5 mm.

The resulting assemblies are all interpenetration-free and
have 1 mm of diametral clearance, making them simulation-
compatible; furthermore, they have high triangle density,
allowing simulation with fast contact methods that collide
meshes against signed distance fields [47, 54] (Figure 2). In
addition, they can all be 3D printed and assembled in the real
world; due to printer overextrusion, our real-world assemblies
have a tighter diametral clearance of 0.5-1.0 mm (Figure 3).

B. Assembly Environments

We provide ready-to-use, parallelized simulation environ-
ments for all 100 assemblies in the dataset in a robotics sim-
ulator [49, 57]; these environments can be used for arbitrary
purposes, including training RL or imitation-learning policies
(Figure 1 A). By default, each environment contains a Franka
robot, a plug, and a socket. In the initial state, the robot
and socket states are randomized and the plug is randomly
initialized in the robot gripper (Table II); in the goal state,
each plug is inserted into its corresponding socket. Initial states
can be arbitrarily modified for custom applications.

We also provide utility functions that implement key algo-
rithms used in the work (e.g., trajectory matching based on
dynamic time warping). The simulation environments have
been stress-tested by our own research; we aim for them
to enable others to train their own specialist and generalist
assembly policies and benchmark their results.

Fig. 2. Simulation-compatible assembly dataset. We provide a dataset of
100 assemblies derived from [81]. The assemblies are interpenetration-free,
allowing them to be simulated in widely-used robotics simulators.

00015

01036

0034000296

0104100731 01129

00320 00681

00768

00863 0008100110 00446 00028

00388 0074100271 00346 01136

Fig. 3. Real-world versions of assemblies from our dataset. We print all
100 assemblies from our dataset in the real world and show 20 assemblies
above, with unique IDs listed for later reference.

V. LEARNING METHODS

Our second contribution is a set of methods for learning spe-
cialist and generalist policies over our assembly dataset. For
specialist policies, we find that RL alone is ineffective; thus,
we guide RL with imitation learning. We face 3 challenges:
1) generating demonstrations for assembly, 2) augmenting RL
with demonstrations, and 3) selecting demonstrations to use
during learning. To address these challenges, we propose a
novel approach combining assembly-by-disassembly, RL with
an imitation objective, and trajectory matching via dynamic
time warping and signature transforms. We describe these

…

(A) (B) (C) (D)

Fig. 4. Simulation-based generation of disassembly paths. For each
assembly, we generate disassembly paths by A) executing a grasp from a
grasp optimization procedure, B) using a low-level controller to lift the plug
from the socket and move to a randomized pose, and C) repeating the process
for additional poses, until D) collecting 100 successful disassembly paths.

building blocks in Sections V-A, V-B, and V-C, respectively.
For generalist policies, we face 3 additional challenges: 1)

representing assembly geometry to the generalist network, 2)
distilling knowledge from the specialists to the generalists,
and 3) improving substandard performance. To address these
challenges, we apply a combination of geometric encoding,
policy distillation, and curriculum-based RL fine-tuning. We
describe these components jointly in Section V-D. To see the
results of these methods, skip to Section VI.

A. Specialist Learning: Assembly-by-Disassembly

When training specialists, our first challenge is to generate
demonstrations for assembly. Collecting human demonstra-
tions for assembly in simulation is challenging, requiring
skilled operators and advanced teleoperation interfaces [50].
However, using motion planners is also difficult, as the kine-
matics of assembly are a narrow passage problem [76]. In-
spired by [18, 81], we instead generate demonstration paths for
disassembly, which we reverse to generate paths for assembly.

Specifically, we first perform kinematics- and geometry-
based grasp sampling based on [19]; for details, see Fig-
ure S12 and Appendix D. For each assembly, we initialize
the plug and socket meshes in their assembled state, sample
grasps along the surface of the plug, reject the samples if they
violate kinematic or manipulability constraints, and repeat the
process until generating 100 grasp candidates.

Next, we implement physics-based grasp evaluation. For
each grasp, we randomize the pose of the assembly (Table II),
command the robot to execute the grasp using a low-level
controller, and lift the plug to a random pose (Figure 4). If
the plug remains in the gripper after the procedure, the grasp is
successful. We repeat the process for 1000 trials and compute
success rates for all 100 grasps; the highest-performing grasp
for the given assembly is the one with the highest success rate.

For each assembly, now only using the highest-performing
grasp, we repeat the evaluation procedure. For each successful
trial, we consider the trajectory of the end effector as a disas-
sembly demonstration Di. In general, Di consists of states x =
[x1i , x

2
i , ..., x

Ni
i], where N is the number of states; each state xji

can be defined as [pji ; v
j
i ; a

j
i], where p is position, v is velocity,

and a is acceleration. We define a reversed disassembly
demonstration D′

i as simply x′i = [xNi
i , xNi−1

i , ..., x1i], which

can naively be used as an assembly demonstration. 4 However,
the corresponding velocities v′i = [vNi

i , vNi−1
i , ..., v1i] and

accelerations a′i = [aNi
i , aNi−1

i , ..., a1i] are in general non-
physical. Thus, for each successful trial, we record only
the reversed disassembly path p′i = [pNi

i , pNi−1
i , ..., p1i]. We

repeat the procedure until collecting 100 successful reversed
disassembly paths (Figure 4D, Figure S13), which we treat
as assembly paths in Sections V-B and V-C.

B. Specialist Learning: RL with Imitation Objective

When training specialists, our second challenge is to aug-
ment RL with demonstrations. Before we describe our aug-
mentation approach, we briefly describe our baseline RL ap-
proach, which is a reimplementation of [77]; for RL formalism
and extended descriptions, see Appendix F.

As described in Section:IV-B, the environments are initial-
ized with a robot, a plug with randomized pose in the robot
gripper, and a socket with randomized pose above a tabletop
(Table II). Ultimately, the robot must learn a policy that allows
it to assemble the plug and socket while being robust to initial
randomization and control/perception error.

We formulate the robotic assembly problem as a Markov
decision process (MDP), where the objective is to learn a
policy that maximizes the expected sum of discounted rewards
(i.e., solves the assembly problem). We use proximal policy
optimization (PPO) [48, 73] to learn the policy and an approx-
imation of the value function (hyperparameters in Table III).

Our observation space consists of joint angles, the current
end-effector pose, and the end-effector goal pose; our input
to the critic also includes joint velocities, end-effector lin-
ear/angular velocities, and the current plug pose (Table IV)
[62]). To model real-world control/perception error, we apply
noise to all socket-pose observations (Table V). Our action
space consists of incremental (∆) pose targets for a task-space
impedance controller. Finally, our reward (without imitation)
consists of terms that 1) penalize distance-to-goal, 2) penalize
simulation error, and 3) reward task difficulty at each timestep,
as well as a term that rewards task success (Appendix F).

Now we describe our augmentation approach. Inspired by
[59, 61], we augment RL with demonstrations by directly
adding an imitation reward to our reward formulation. Specif-
ically, we define our per-timestep reward as follows:

Rt = ωBRBt + ωIRIt (1)

where RBt is the baseline per-timestep reward, described above
and in Appendix F; RIt is an imitation-based per-timestep
reward that encourages the agent to mimic demonstrations;
and ωB and ωI are weighting hyperparameters.5

Following [59], we define RIt as the maximum per-timestep
reward over all demonstrations for the given assembly (i.e., the

4We ensure that the range of final poses of the plug in the disassembly
paths (i.e., the initial poses of the plug in the reversed disassembly paths)
includes the range of initial poses of the plug in the assembly environments
(Section IV-B), providing spatially-relevant paths for subsequent imitation.

5We set ωB and ωI simply so that the baseline and imitation terms fall
within the same order of magnitude.

reversed disassembly paths from Section V-A). Specifically,

RIt = max
i=1,...,M

RIit (2)

where M is the number of demonstrations. Unlike [59, 61], we
apply the augmentation approach to contact-rich manipulation
rather than locomotion. We define RIit in Section V-C.

C. Specialist Learning: Trajectory Matching via Dynamic
Time Warping and Signature Transforms

When training specialists, our third and final challenge is to
select demonstrations to use during learning. Specifically, for
a given assembly, we must define a reward RIjt that quantifies
the instantaneous value of imitating any reversed disassembly
path p′i, after which we can use Equation 2.

Intuitively, we can define RIit as the distance between the
assembly path the robot has already traversed during an RL
episode, and the reversed disassembly path p′i under considera-
tion. However, like most simulators, ours has a fixed ∆t; thus,
for a given path, the arc length between consecutive points
is a function of the instantaneous velocity. In general, the
path the robot has already traversed has a disparate sequence
of velocities compared to any reversed path p′i, resulting in
disparate spatial discretizations. We thus seek a distance metric
between paths that is insensitive to speed or sampling rate.

We explore 2 powerful methods for computing such a met-
ric, dynamic time warping (DTW) and signature transforms.
DTW is a dynamic programming algorithm for quantifying
the difference between time series [72]. Given two sequences
a = [a1, a2, ..., aP] and b = [b1, b2, ..., bQ], DTW matches
each ai to one or more bj and vice versa. The matching
process minimizes a cost C(a, b) defined as the sum of
Euclidean distances between each ai and its match(es) from b;
furthermore, the process satisfies constraints that 1) a1 must
match with at least b1 (i.e., first points aligned), 2) aP must
match with at least bQ (i.e., last points aligned), and 3) all
matches must be monotonic (i.e., if ai matches with bj , then
ai+1 cannot match with bj−1, nor ai−1 with bj+1). Ultimately,
DTW returns the cost C∗(a, b) of the optimal matches between
a and b; for intuition and pseudocode, see Appendix G.

When we apply DTW, at each timestep t, we first extract
the path pe(t,N) of the end effector over a window of length
N=10 steps, [pt−(N−1)

e , p
t−(N−2)
e , ..., pte]. Then, for each re-

versed disassembly path p′i, we find the closest subsequent
points on p′i from the first point pt−(N−1)

e and current point
pte on the windowed end-effector path, and we extract the
segment of p′i between those 2 closest points. We then use
DTW to compute the minimum cost C∗(pe(t,N), p′i) between
the windowed end-effector path and the disassembly segment,
and we set RIit = 1 − tanhC∗(pe(t,N), p′i). We repeat this
procedure for each p′i [16] and then compute RIt (Equation 2).

On the other hand, signature transforms represent tra-
jectories as a collection of path integrals called a path sig-
nature [3, 10, 35, 45], which can also quantify distances
between paths. In our context, given a 3-dimensional path
p(t)a,b = (x1(t), x2(t), x3(t))a,b, where x1(t), x2(t), and

x3(t) represent x, y, and z coordinates for t ∈ [a, b], the path
signature is a tensor of all possible path integrals between the
coordinates. The first level of the path signature is

S1(xi(t))a,t =

∫ t

a

dxi(t) = xi(t)− xi(a) (3)

where i = 1, 2, 3 (i.e., 3 total integrals), and the second level
of the path signature is

S2(xi(t), xj(t))a,t =

∫ t

a

S1(xi(t))a,tdxj(t) (4)

where i = 1, 2, 3 and j = 1, 2, 3 (i.e., 9 total path integrals).
Further levels of the path signature can be derived in similar
fashion. Finally, the full path signature is

S(p(t))a,b = (1, S1(xi(t)a,b), S2(xi(t), xj(t))a,b, ...) (5)

where all indices iterate over 1, 2, 3.6 The signature transform
is simply the functional T (p(t))a,b : p(t)a,b → S((p(t))a,b
that takes a path as input and outputs the path signature. Path
signatures inherit translation and reparameterization invariance
from path integrals; as desired, these properties mitigate dis-
cretization sensitivity. For details, see Appendix H.

When we apply the signature transform, at each timestep t,
we consider the full path pe(T)0,t of the end effector from the
beginning of the episode. Then, for each reversed disassembly
path p′i, we find the closest point on p′i from the current point
pe(t) on the end-effector path and extract the segment of p′i
between the start and the closest point. We then compute the
path signatures S(pe(T))0,t and S(p′i) of the end-effector path
and disassembly path segment [34], respectively, and compute
the cost C(S(pe(T))0,t, S(p′i)) between signatures as

C
(
S(pe(T))0,t, S(p

′
i)
)
= ∥S(pe(T))0,t − S(p′i)∥2. (6)

Finally, we set RIit = 1− tanhC
(
S(pe(T))0,t, S(p

′
i)
)
.

We have thus described our specialist learning methods,
which consist of assembly-by-disassembly, RL with an imita-
tion objective, and trajectory matching. To see evaluations and
results, skip to Section VI. Next, we describe our generalist
learning methods, which consist of geometric encoding, policy
distillation, and curriculum-based RL fine-tuning.

D. Generalist Learning: Geometric Encoding, Policy Distilla-
tion, and Curriculum-based RL Fine-tuning

The first challenge when training a generalist is to represent
assembly geometry to the generalist network. For specialist
policies, the policy/value networks do not take geometry as
input, as it is constant; however, for a generalist policy, the
networks must take geometry as input, as assembling a wide
range of parts without such knowledge would be infeasible.

Inspired by [87], we learn a latent representation of object
geometry prior to learning a generalist policy. Specifically, we
sample point clouds from the surfaces of all plug and socket
meshes, and we train a PointNet autoencoder [64] over the

6As our data consists of discrete time series, we technically use the discrete-
time form of path signatures (Appendix H).

point clouds to minimize reconstruction loss; for details, see
Appendix I. We then pass the point clouds into the encoder
and store the latent vectors zi. During generalist learning, for
a given assembly, we simply concatenate zp and zs for the
corresponding plug and socket meshes as input to the policy.

The second challenge when training a generalist is to distill
knowledge from the specialist policies into a generalist policy.
As shown in Section VI-B, it is ineffective to train a generalist
policy from scratch over a large number of assemblies, and we
aim to reuse knowledge from already-trained specialists. Thus,
we implement a simple 2-stage policy distillation procedure:

1) Behavior Cloning (BC) [63]: We use standard BC on
the specialists. Specifically, we execute each specialist
policy πs under initial-pose randomization (Table II)
and observation noise (Table V) until completing
5000 successful episodes. For each success, we record
the state-action pairs as a demonstration Di =
{(s1i , a1i), (s2i , a2i), ..., (s

Ni
i , aNi

i)}. We randomly initial-
ize a generalist policy πg and minimize MSE loss
L = 1

M

∑M
i=1

∑Ni

j=1(a
j
i − πg(s

j
i))

2 between ground-
truth actions in the demonstrations and actions predicted
by the generalist (batch size M=128, epochs=1000). The
output is an initial generalist policy πg .

2) DAgger [69]: We use DAgger to reduce covariate shifts
by executing the generalist policy and querying the
specialists under the induced state distributions. Specif-
ically, we execute the current πg for 256 successful or
unsuccessful episodes and record the state-action pairs.
We minimize MSE loss L = 1

M

∑M
i=1

∑Ni

j=1(πg(s
j
i) −

πs(s
j
i))

2 between the actions taken by the generalist and
the specialist actions queried at those same states. The
output is a refined generalist policy π′

g .
The third challenge when training a generalist is to further

improve performance. Although BC and DAgger can produce
reasonable policies, BC is limited by dataset size and diversity,
and DAgger is limited by specialist performance on states
visited by the generalist. In contrast to the iterative, highly-
complex approach of [87], we perform a single RL fine-tuning
phase on the generalist that follows the same baseline RL-only
approach we evaluate when learning specialists. As we show
later (Section VI), the curriculum is particularly critical.

Specifically, we initialize our actor with π′
g and follow the

baseline RL procedure outlined in Appendix F. We use a
sampling-based curriculum (SBC), where we expose the agent
to the full range of initial-pose randomization at the start of the
curriculum, but increase the lower bound at each stage; this
curriculum outperforms naive implementations for assembly
[77]. More precisely, at each curriculum stage k = 1, ...,K,
the initial plug height hinitk ∼ U [hmink , hmax], where hmink <
hmax, hinit1 ≤ hinitk ≤ hinitK , and hmax remains constant.

VI. SPECIALIST AND GENERALIST POLICIES

Our third contribution is a demonstration that the prior
learning methods enable high-performance specialist and gen-
eralist policies in simulation. We now present detailed eval-
uations of our specialist and generalist policies. The key

takeaway is that our learning approaches (Section V) are a
generic and powerful procedure for solving diverse assembly
problems in both a part-specific and unified manner.

As a preliminary step to help with exposition, we take the
latent vectors of assembly geometry from Section V-D and
use the t-SNE algorithm [31] to reduce the dimensionality of
the data to 2D (Figure 5). We then sample 10 assemblies that
are well distributed across the resulting clusters. Although we
perform simulation-based evaluations across all 100 assets, we
will frequently discuss these 10 assemblies in further detail.

Loading [MathJax]/extensions/MathMenu.js

00681

01129

00015 01036 00340

0104100731

00768

00320

00296

Fig. 5. t-SNE visualization of geometric representations of 100 assem-
blies. We train a PointNet-based autoencoder to learn a latent representation
of assembly geometry, and we use t-SNE (with perplexity = 6) to reduce the
dimensionality of the latent vectors to 2D. Here we plot the lower-dimensional
representations of all 100 assemblies. For visualization, we sample 10 assets
that are well distributed across clusters. We also show examples of multiple
assemblies sampled from the same cluster in Figure S15.

A. Evaluations of Specialist Policies
We now present the results of our specialist policies,

which are trained based on our combination of assembly-by-
disassembly, RL with an imitation objective, and trajectory
matching via dynamic time warping and signature transforms.
We perform all evaluations in this section under the maximum
bounds for initial-pose randomization (Table II) and observa-
tion noise (Table V) experienced during training.

For specialist policies, our first evaluation question is,
which trajectory-matching approach is most effective for
AutoMate? We evaluate the following 4 test cases:

• IndustReal [77]: This is a state-of-the-art RL-only ap-
proach for simulation-based robotic assembly, described
in Section V-B. It does not use an imitation objective and
thus illustrates results without trajectory matching.

• State-based Matching: This is a naive baseline for
RL with an imitation objective. At each timestep, we
calculate the distance from the end effector to every point
of every disassembly path, and we compute our imitation
reward based on the shortest distance.

• Dynamic Time Warping (Ours): We compute our imi-
tation reward based on the DTW distance (Section V-C).

• Signature Transform (Ours): We compute our imitation
reward based on a path-signature distance (Section V-C).

For each of the 4 test cases, for each of the 100 assemblies,
we train a specialist policy over 5 random seeds. We select

the best seed and evaluate it over 5000 trials, for a total of
2M simulated trials. Figure 6 shows our results.

IndustReal has the lowest success rates over the 10 selected
assemblies, indicating the importance of imitation. State-based
matching provides a substantial improvement, but still does
not result in high success rates. Dynamic time warping and
signature transforms consistently have the highest success
rates, with slightly better performance for the former. These
results are also reflected over all 100 assemblies, with mean
success rates of 38.45 ± 32.16% for IndustReal, 59.11 ±
19.65% for state-based matching, 81.50 ± 24.42% for DTW,
and 77.46 ± 22.61% for signature transforms.

Our next evaluation question is, does AutoMate perform
better than naive and state-of-the-art baselines? We eval-
uate the following 5 test cases:

• Go to Goal: This is a naive baseline for control. We use a
task-space impedance controller to move the end effector
directly to the goal.

• Top Down: This is a naive baseline for control. We use a
task-space impedance controller to move the end effector
directly above the goal and straight downward.

• Follow Trajectory: This is a naive baseline for imitation
learning. We select the demonstration containing the
closest point to the initial end-effector position, and we
use a task-space impedance controller to move the end
effector along that fixed path.

• IndustReal: This is the state-of-the-art RL-only approach
for simulation-based robotic assembly described earlier.

• AutoMate (Ours): We use a combination of assembly-
by-disassembly, RL with an imitation objective, and tra-
jectory matching with dynamic time warping.

For each of the 5 test cases, for each of the 100 assemblies,
we train a specialist policy over 5 seeds. We select the best
seed and evaluate it over 5000 trials, for a total of 2.5M
simulated trials. Figure 7 shows our results.

Go to Goal, Top Down, and Follow Trajectory have the
lowest success rates over the 10 assemblies, as they lack
robustness to controller error, observation noise, and distur-
bances during contact. IndustReal notably outperforms the 3
naive baselines on several assemblies, demonstrating the bene-
fit of an RL-based approach. However, AutoMate consistently
has the highest success rates. Again, the preceding results are
reflected over all 100 assemblies, with mean success rates of
15.44 ± 11.56% for Go To Goal, 21.54 ± 15.49% for Top
Down, 21.62±22.32% for Follow Trajectory, 38.45±32.16%
for IndustReal, and 81.50± 24.42% for AutoMate.

Our third evaluation question is, how does AutoMate
perform across all 100 assemblies? Specifically, rather than
selecting 10 assemblies or summarizing statistics, we tabulate
results over all 100 assemblies. Appendix J shows our results.
We provide our raw data as supplementary information.

AutoMate shows consistent performance over a wide spec-
trum of the assemblies. Specifically, for 80 assemblies, Auto-
Mate has ≈80% (78%) success rates or higher, and for 55, it
has 90% success rates or higher. We conclude that AutoMate is
a highly-effective strategy for training specialists over diverse

geometries. The most challenging assemblies (i.e., bottom
20%) tend to have small-diameter plugs, sockets with small
contact surfaces, or sockets with stair-like internal features.

We conduct additional evaluations of the robustness of our
specialist policies to initial-pose randomization in Appendix K
and observation noise in Appendix L.

B. Evaluation of Generalist Policy

We now present the results of our generalist policies, which
are trained based on our combination of behavior cloning,
policy distillation, and curriculum-based RL fine-tuning. As
with the specialists, we perform all evaluations under the
maximum bounds for initial-pose randomization (Table II)
and observation noise (Table V) experienced during training.

Our primary evaluation question is, which policy distilla-
tion approach is most effective for AutoMate? We evaluate
the following 4 test cases:

• Behavior Cloning (BC): We use standard BC to distill
the specialist policies to a generalist policy πg , as de-
scribed in Section V-D.

• BC + DAgger: We first use standard BC and then use
DAgger to produce a refined generalist policy π′

g .
• BC + DAgger + RL fine-tuning: We first use standard

BC, then use DAgger, and finally use RL fine-tuning to
produce a generalist policy π′′

g .
• BC + DAgger + RL fine-tuning with SBC (Ours): We

do the above, but also apply a sampling-based curriculum
(SBC) proposed in [77], where the lower bound of initial-
pose randomization increases at each stage, but the upper
bound remains fixed (Appendix F).

For each of the 4 test cases, we train a generalist policy over
20 assemblies; these include the 10 assemblies sampled from
t-SNE clusters (Figure 5), as well as 10 additional assemblies
evenly sampled in t-SNE space. We evaluate the performance
of each test case over 5000 trials per assembly, for a total of
400k trials. Figure 8 shows our results.

As expected, BC has the lowest success rate over the 20
assemblies (28.84 ±15.23%), likely due to covariate shift;
however, BC + DAgger provides marginal improvement (31.06
± 15.06%). In contrast, BC + DAgger + RL provides substan-
tial improvement (52.85 ± 14.01%), including on assemblies
where the prior techniques failed, demonstrating the value of
RL-based fine-tuning. Nevertheless, BC + DAgger + RL with
SBC has the highest success rate by far (80.42 ± 20.93%) and
improves performance on almost every assembly, underscoring
curriculum learning during fine-tuning. As a final sanity check,
we train an RL policy with SBC from scratch over the 20
assemblies and measure a low success rate (48.43 ± 15.28%).

As a secondary evaluation question, we also ask, what is the
scaling law between generalist performance and the number
of specialists used in training? For details, see Appendix M.

VII. SIM-TO-REAL TRANSFER

Our final contribution is sim-to-real transfer of our specialist
and generalist policies. We first describe our real-world system

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1
IndustReal State Signature DTW

Asset IDs
S

uc
ce

ss
 R

at
e

Loading [MathJax]/extensions/MathMenu.js

0

0.2

0.4

0.6

0.8

1

Loading [MathJax]/extensions/MathMenu.js

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1
Go to Goal Top Down Follow Trajectory IndustReal Automate

Asset IDs

S
uc

ce
ss

 R
at

e

Loading [MathJax]/extensions/MathMenu.js

Overall

Fig. 6. Simulation-based evaluation of trajectory-matching approaches for learning specialist policies. For each of the 100 assemblies, we train a
specialist policy with 4 different approaches for matching the current robot path with demonstrations. For each approach, we train 5 random seeds, select
the best seed, and evaluate it 5 times over 1000 trials. We illustrate average results over all 100 assemblies, as well as specific results for 10 sampled
assemblies (Figure 5). IndustReal is a state-of-the-art matching-free approach. State selects the demonstration containing the closest point to the current robot
state. Signature selects the demonstration with the minimum signature-transform distance from the robot trajectory. DTW selects the demonstration with the
minimum dynamic-time-warping distance from the robot trajectory. The Signature and DTW approaches significantly outperform the others.

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1
Go to Goal Top Down Follow Trajectory IndustReal Automate

Asset IDs

S
uc

ce
ss

 R
at

e

Loading [MathJax]/extensions/MathMenu.js

0

0.2

0.4

0.6

0.8

1

Loading [MathJax]/extensions/MathMenu.js

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1
Go to Goal Top Down Follow Trajectory IndustReal Automate

Asset IDs

S
uc

ce
ss

 R
at

e

Loading [MathJax]/extensions/MathMenu.js

Overall

Fig. 7. Simulation-based evaluation of control schemes for specialist policies. For each of the 100 assemblies, we build a specialist policy with 5 different
control approaches. For each approach, we train 5 random seeds, select the best seed, and evaluate it 5 times over 1000 trials. We illustrate average results
over all 100 assemblies, as well as specific results for 10 sampled assemblies (Figure 5). Go to Goal uses a task-space impedance controller to move directly
to the goal. Top Down uses the controller to move directly above the goal and then downward. Follow Trajectory selects the demonstration containing the
point closest to the initial robot state and uses the controller to follow the demonstration path. IndustReal is a state-of-the-art, RL-only baseline. AutoMate is
our proposed strategy combining assembly-by-disassembly, RL with imitation, and dynamic time warping. Automate significantly outperforms the others.

00320 00015 00731 01129 00346 01041 01036 00768 00681 00296 00417 01136 00028 00340 00446 00110 00388 00271 00081 00863
0

0.2

0.4

0.6

0.8

1
BC BC+DAgger BC+DAgger+RL BC+DAgger+RL(w. SBC)

Asset IDs

S
uc

ce
ss

 R
at

e

Loading [MathJax]/extensions/MathMenu.js

0

0.2

0.4

0.6

0.8

1

Loading [MathJax]/extensions/MathMenu.js

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1
Go to Goal Top Down Follow Trajectory IndustReal Automate

Asset IDs

S
uc

ce
ss

 R
at

e

Loading [MathJax]/extensions/MathMenu.js

Overall

Fig. 8. Simulation-based evaluation of training approaches for generalist policies. We train a single generalist policy for 20 assemblies using 4 different
approaches. For each approach, we train 5 random seeds, select the best seed, and evaluate it 5 times over 1000 trials. We illustrate average results over the
20 assemblies, as well as specific results for each assembly (asset ID lookup in Figure S24). BC uses behavior cloning to distill the corresponding specialist
policies for the 20 assemblies into a generalist policy. BC + DAgger follows BC with DAgger iterations to reduce covariate shift. BC + DAgger + RL follows
BC + DAgger with an RL-based fine-tuning stage. BC + DAgger + RL (w/SBC) uses a sampling-based curriculum (SBC) for initial-pose randomization [77],
which provided a critical boost in performance; BC + DAgger + RL (w/SBC) significantly outperforms the others.

design and then present real-world evaluations and demon-
strations of our specialist and generalist policies. We strongly
encourage readers to view our supplementary video. The key
takeaway is that our learning approaches, when combined
with state-of-the-art sim-to-real transfer and pose estimation
methods, can produce real-world outcomes that are equivalent
to (and sometimes better than) those in simulation.

A. Real-World System Design
As first described in Section III, our real-world system

consists of a Franka robot with a parallel-jaw gripper, a wrist-
mounted RealSense D435 camera, a Schunk EGK40 parallel-
jaw gripper mounted to the tabletop, and 3D-printed assem-
blies from our dataset (Figure S11). Our communications

framework is closely modeled after [77]; however, our per-
ception, grasping, and control procedures differ significantly.

For perception, we aim to accurately estimate plug and
socket states while initializing them in a far less-constrained
manner. We use a powerful segmentation tool [38], textureless
CAD models of our parts, and a state-of-the-art pose estimator
[89] to estimate the 6-DOF poses of each part from RGB-
D images. Figure S23 shows our pipeline; for details, see
Appendix N. For grasping, we aim to avoid manually speci-
fying grasp poses. We use our grasp sampling and evaluation
procedure described (Section D) to generate a high-performing
grasp for each assembly, and we execute those grasps in the
real world. Finally, we aim to avoid any assembly-specific

tuning of controller gains or action scales, and we restrict
ourselves to a single set of parameters for all real-world trials.

B. Real-World Policy Evaluations

We now present the results of our specialist and generalist
policies in the real world. For these trials, we place the robot
in lead-through, manually grasp a plug, and guide it into the
socket. We then programmatically lift the plug until free from
contact; apply an xy perturbation of ± 10 mm, z perturbation
of 15 ± 5 mm, and yaw perturbation of ± 5◦; apply x, y, and
z observation noise of ±2 mm each; and deploy a policy.7

Our first evaluation question is, do our specialist policies
transfer to the real world? For each of 20 assemblies, we
deploy the corresponding specialist policy 10 times, for a total
of 200 trials. Figure 9 (left) shows our results.

The mean success rate in the real world is 86.50 ± 16.52%,
whereas the success rate in simulation is 90.65 ± 13.07%.
Across assemblies, real-world success rates are within close
range of simulation; in fact, for 11/20 assemblies, real-world is
better. Such results likely indicate that our simulated training
conditions (e.g., initial-pose randomization, observation noise)
are sufficiently adverse to train robust and performant policies.
We conduct additional evaluations of the robustness of our
policies to initial-pose randomization in Appendix P.

Our second evaluation question is, do our generalist
policies transfer to the real world? For each of the same
20 assemblies, we deploy the generalist policy (trained from
specialists for those assemblies) 10 times, for a total of 200
trials. Figure 9 (right) shows our results.

The mean success rate in the real world is 84.50 ± 21.79%,
whereas the success rate in simulation is 80.42 ± 20.93%.
For 16/20 assemblies, real-world success rates are higher.
Moreover, real-world success is within 2.0% of that of the spe-
cialists. Such results again indicate that our simulated training
conditions are sufficiently adverse, and more importantly, that
our distillation approach is highly effective. Qualitatively, the
generalist exhibits smoother motion than the specialists with
identical gains, suggesting an averaging effect during training.

C. Real-World Perception-Initialized Evaluation

Finally, we present the results of our specialist and generalist
policies as part of a perception-initialized assembly workflow.
For these trials, we place the plug haphazardly on a foam block
and place the socket haphazardly within the Schunk gripper.
We capture an RGB-D image, estimate the poses of the parts,
grasp the plug, transport it to the socket, and deploy a specialist
or generalist assembly policy (Figure 10). This workflow
presents a unique challenge, as initial part poses are even less
constrained, and perception and/or control error accumulates
at each stage, demanding increased policy robustness.

Our question is, can our specialist and generalist policies
help solve the perception-initialized assembly task? For 5

7The manual grasping step is uncontrolled and likely contributes an
additional 1-3 mm and 5-10 deg of perturbation.

distinct assemblies from Figure 3, we deploy the correspond-
ing specialists 10 times, for a total of 50 trials. We repeat the
procedure for the generalist policy. Table I shows our results.

Asset ID Specialist Generalist
Policy-Only Perception-Init Policy-Only Perception-Init

00015 10/10 10/10 10/10 10/10
00296 8/10 8/10 10/10 9/10
00320 10/10 10/10 10/10 8/10
00340 10/10 9/10 10/10 8/10
00346 9/10 8/10 8/10 8/10

Total # 47/50 45/50 48/50 43/50
Total (%) 94.0% 90.0% 96.0% 86.0%

TABLE I
REAL-WORLD EVALUATIONS FOR PERCEPTION-INITIALIZED

ASSEMBLY. WE PROVIDE SUCCESS RATES OF OUR SPECIALIST AND
GENERALIST POLICIES AS PART OF A PERCEPTION-INITIALIZED

ASSEMBLY WORKFLOW. WE ALSO COMPARE TO ISOLATED POLICY
EVALUATIONS FROM SECTION VII-B

.
For specialists, the mean success rate is 90.0%, which

is within 4.0% of isolated policy evaluations from Sec-
tion VII-B, and for generalists, it is 86.0%, which is within
10.0%. These results indicate that 6-DOF pose estimation,
grasp optimization, and our proposed methods for learning
specialist and generalist policies can be effectively com-
bined to achieve perception-initialized assembly. Qualitatively,
higher success rates occur on assemblies with distinct visual
features, as these correlate with more accurate pose estimates.
We conduct additional evaluations of the robustness of our
policies to observation noise in Appendix O.

VIII. CONCLUSIONS

We present AutoMate, a learning framework and system
for solving diverse assembly problems with specialist and
generalist policies. To our knowledge, AutoMate provides the
first simulation-based framework for learning specialist and
generalist policies over a wide range of assemblies, as well
as the first system to demonstrate zero-shot sim-to-real over
such a range. We evaluate our framework and system over
5M+ simulated trials and 500 real-world trials.

A key limitation of our work is that for 20 assemblies, our
specialist policies achieve <80% success rates (Figure S16).
Policy failures are typically caused by unstable grasps on ir-
regular geometries or sudden slip between the contact surfaces
of the plug and socket. We anticipate that simple hardware
improvements (e.g., higher-force grippers) and algorithmic
improvements (e.g., utilization of demonstrations where the
robot recovers from slip) may resolve these failure cases.

Our work opens up exciting opportunities for future work.
First, we currently solve 2-part assemblies, which do not
require sequence planning. In future work, we will develop
an accelerated sequence planner for multi-part assemblies.

Second, our trajectory-matching approaches focus on paths
in R3. We will generalize our trajectory-matching approaches
(i.e., DTW and signature transforms) to paths consisting of
SE(3) transforms, facilitating assembly of parts requiring
significant reorientation during alignment and insertion.

00015
00731

01129
00320

01041
01036

00768
00340

00681
00296

00417
01136

00028
00446

00346
00110

00388
00271

00081
00863

0

0.2

0.4

0.6

0.8

1
Simulation (Total: 100k Trials) Reality (Total: 200 Trials)

Asset IDs

S
uc

ce
ss

 R
at

e

Loading [MathJax]/extensions/MathMenu.js

00015
00731

01129
00320

01041
01036

00768
00340

00681
00296

00417
01136

00028
00446

00346
00110

00388
00271

00081
00863

0

0.2

0.4

0.6

0.8

1
Simulation (Total: 100k Trials) Reality (Total: 200 Trials)

Asset IDs

S
uc

ce
ss

 R
at

e

Loading [MathJax]/extensions/MathMenu.js

00015
00731

01129
00320

01041
01036

00768
00340

00681
00296

00417
01136

00028
00446

00346
00110

00388
00271

00081
00863

0

0.2

0.4

0.6

0.8

1
Simulation (Total: 100k Trials) Reality (Total: 200 Trials)

Asset IDs

S
uc

ce
ss

 R
at

e

Loading [MathJax]/extensions/MathMenu.js

GeneralistSpecialist

Fig. 9. Comparison of real-world specialist-policy and generalist-policy success rates with simulated analogues. We deploy our specialist policies
over 20 assemblies and 200 trials (asset ID lookup in Figure S24), and we deploy our generalist policy over the same conditions. We compare the results
to simulated analogues. Left: For specialists, our success rates in the real world are highly comparable to those in simulation, with a drop of only 4.15% on
average. Right: For the generalist, our success rates in the real world are again highly comparable to simulation, with an improvement of 4.08% on average.
Now comparing our real-world specialists to our real-world generalist, we note that generalist performance is within 2.0% of the specialists on average.

Pose Estimation Grasp Transport Place Insert

Plug

Socket

Robot Setup

Schunk Gripper

Camera

Fig. 10. Real-world perception-initialized assembly procedure. We illustrate our procedure for performing perception-initialized assembly (i.e., from
perception to insertion). Setup: We press a plug haphazardly onto a foam block, and we place a socket haphazardly within a Schunk gripper on a table. Pose
Estimation: We estimate the pose of the plug or socket using our perception pipeline (Section N). Grasp: We grasp the plug using the output of our grasp
optimizer (Section D). Transport: We transport the plug across the workspace. Place: We place the plug above the socket. Insert: We deploy a specialist or
generalist policy (Section V).

Third, we train specialist policies on a wide range of as-
semblies and distill a generalist policy from 20 specialists. We
will continue to distill generalists from more specialists using
powerful model architectures and larger model capacities,
while consistently evaluating our results in the real world.

Through this line of work, we aim to gradually build
towards a large-model paradigm for industrial robotics, while
staying grounded in real-world deployment.

REFERENCES

[1] Iretiayo Akinola, Jie Xu, Jan Carius, Dieter Fox, and
Yashraj Narang. TacSL: A library for visuotactile sensor
simulation and learning. 2023.

[2] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej,
Mateusz Litwin, Bob McGrew, Arthur Petron, Alex
Paino, Matthias Plappert, Glenn Powell, Raphael Ribas,
Jonas Schneider, Nikolas Tezak, Jerry Tworek, Pe-
ter Welinder, Lilian Weng, Qiming Yuan, Wojciech
Zaremba, and Lei Zhang. Solving Rubik’s cube with
a robot hand. arXiv preprint arXiv:1910.07113, 2019.

[3] Lucas Barcelos, Tin Lai, Rafael Oliveira, Paulo Borges,
and Fabio Ramos. Path signatures for diversity in
probabilistic trajectory optimisation. arXiv preprint
arXiv:2308.04071, 2023.

[4] Maria Bauza, Antonia Bronars, and Alberto Rodriguez.
Tac2Pose: Tactile object pose estimation from the first

touch. The International Journal of Robotics Research,
2023.

[5] Richard Bellman and Robert Kalaba. On adaptive control
processes. IRE Transactions on Automatic Control, 1959.

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, et al. RT-1: Robotics transformer for real-world
control at scale. arXiv preprint arXiv:2212.06817, 2022.

[7] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding,
Danny Driess, Avinava Dubey, Chelsea Finn, et al. RT-2:
Vision-language-action models transfer web knowledge
to robotic control. arXiv preprint arXiv:23 07.15818,
2023.

[8] Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. Model compression. In ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2006.

[9] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp
Krähenbühl. Learning by cheating. In Conference on
Robot Learning, 2020.

[10] Kuo-Tsai Chen. Integration of paths–A faithful rep-
resentation of paths by noncommutative formal power
series. Transactions of the American Mathematical
Society, 1958.

https://iakinola23.github.io/tacsl/
https://iakinola23.github.io/tacsl/
https://arxiv.org/pdf/1910.07113.pdf
https://arxiv.org/pdf/1910.07113.pdf
https://arxiv.org/pdf/2308.04071.pdf
https://arxiv.org/pdf/2308.04071.pdf
https://journals.sagepub.com/doi/pdf/10.1177/02783649231196925
https://journals.sagepub.com/doi/pdf/10.1177/02783649231196925
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1104847
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1104847
https://arxiv.org/pdf/2212.06817.pdf
https://arxiv.org/pdf/2212.06817.pdf
https://arxiv.org/pdf/2307.15818.pdf
https://arxiv.org/pdf/2307.15818.pdf
https://arxiv.org/pdf/2307.15818.pdf
https://dl.acm.org/doi/abs/10.1145/1150402.1150464
http://proceedings.mlr.press/v100/chen20a/chen20a.pdf
https://www.ams.org/journals/tran/1958-089-02/S0002-9947-1958-0106258-0/S0002-9947-1958-0106258-0.pdf
https://www.ams.org/journals/tran/1958-089-02/S0002-9947-1958-0106258-0/S0002-9947-1958-0106258-0.pdf
https://www.ams.org/journals/tran/1958-089-02/S0002-9947-1958-0106258-0/S0002-9947-1958-0106258-0.pdf

[11] Tao Chen, Jie Xu, and Pulkit Agrawal. A system for
general in-hand object re-orientation. In Conference on
Robot Learning, 2022.

[12] Ilya Chevyrev and Andrey Kormilitzin. A primer on the
signature method in machine learning. arXiv preprint
arXiv:1603.03788, 2016.

[13] Gene Chou, Ilya Chugunov, and Felix Heide. GenSDF:
Two-stage learning of generalizable signed distance func-
tions. Advances in Neural Information Processing Sys-
tems, 2022.

[14] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic,
Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences. In Neural Information
Processing Systems, 2017.

[15] Jack Collins, Mark Robson, Jun Yamada, Mohan Srid-
haran, Karol Janik, and Ingmar Posner. RAMP: A
benchmark for evaluating robotic assembly manipulation
and planning. arXiv preprint arXiv:2305.09644, 2023.

[16] Marco Cuturi and Mathieu Blondel. Soft-DTW: A dif-
ferentiable loss function for time-series. In International
Conference on Machine Learning, 2017.

[17] Michael Dawson-Haggerty. Trimesh, 2019.
[18] LS Homem De Mello and Arthur C Sanderson. A correct

and complete algorithm for the generation of mechanical
assembly sequences. In IEEE International Conference
on Robotics and Automation, 1989.

[19] Clemens Eppner, Arsalan Mousavian, and Dieter Fox.
ACRONYM: A large-scale grasp dataset based on sim-
ulation. In IEEE International Conference on Robotics
and Automation, 2021.

[20] Peter Foster. A brief introduction to path signatures,
2020.

[21] Bowen Fu, Sek Kun Leong, Xiaocong Lian, and Xi-
angyang Ji. 6D robotic assembly based on RGB-only
object pose estimation. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2022.

[22] Bowen Fu, Sek Kun Leong, Yan Di, Jiwen Tang, and
Xiangyang Ji. LanPose: Language-instructed 6D object
pose estimation for robotic assembly. arXiv preprint
arXiv:2310.13819, 2023.

[23] Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash
Kumar, and Sergey Levine. Divide-and-conquer rein-
forcement learning. arXiv preprint arXiv:1711.09874,
2017.

[24] Anders Grunnet-Jepsen and Dave Tong. Depth post-
processing for Intel RealSense depth camera D400 series,
2023.

[25] Anders Grunnet-Jepsen, John Sweetser, Tri Khuong,
Sergey Dorodnicov, Dave Tong, Ofir Mulla, Hila Eliyahu,
and Evgeni Raikhel. Intel RealSense self-calibration for
D400 series depth cameras, 2023.

[26] Anders Grunnet-Jepsen, John N. Sweetser, and John
Woodfill. Tuning depth cameras for best performance,
2023.

[27] Lajos Gergely Gyurkó, Terry Lyons, Mark Kontkowski,
and Jonathan Field. Extracting information from the

signature of a financial data stream. arXiv preprint
arXiv:1307.7244, 2013.

[28] Ankur Handa, Arthur Allshire, Viktor Makoviychuk,
Aleksei Petrenko, Ritvik Singh, Jingzhou Liu, Denys
Makoviichuk, Karl Van Wyk, Alexander Zhurke-
vich, Balakumar Sundaralingam, Yashraj Narang, Jean-
Francois Lafleche, Dieter Fox, and Gavriel State. DeX-
treme: Transfer of agile in-hand manipulation from simu-
lation to reality. In International Conference on Robotics
and Automation, 2023.

[29] Minho Heo, Youngwoon Lee, Doohyun Lee, and Joseph J
Lim. FurnitureBench: Reproducible real-world bench-
mark for long-horizon complex manipulation. In
Robotics: Science and Systems, 2023.

[30] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling
the knowledge in a neural network. Neural Information
Processing Systems, Deep Learning Workshop, 2015.

[31] Geoffrey E Hinton and Sam Roweis. Stochastic neighbor
embedding. In Neural Information Processing Systems,
2002.

[32] Rachel Holladay, Tomás Lozano-Pérez, and Alberto Ro-
driguez. Robust planning for multi-stage forceful ma-
nipulation. International Journal of Robotics Research,
2022.

[33] Zhiwei Jia, Xuanlin Li, Zhan Ling, Shuang Liu, Yiran
Wu, and Hao Su. Improving policy optimization with
generalist-specialist learning. In International Confer-
ence on Machine Learning, 2022.

[34] Patrick Kidger and Terry Lyons. Signatory: differen-
tiable computations of the signature and logsignature
transforms, on both CPU and GPU. In International
Conference on Learning Representations, 2021.

[35] Patrick Kidger, Patric Bonnier, Imanol Perez Arribas,
Cristopher Salvi, and Terry Lyons. Deep signature trans-
forms. Neural Information Processing Systems, 2019.

[36] Kenneth Kimble, Karl Van Wyk, Joe Falco, Elena
Messina, Yu Sun, Mizuho Shibata, Wataru Uemura,
and Yasuyoshi Yokokohji. Benchmarking protocols for
evaluating small parts robotic assembly systems. IEEE
Robotics and Automation Letters, 2020.

[37] Kenneth Kimble, Justin Albrecht, Megan Zimmerman,
and Joe Falco. Performance measures to benchmark
the grasping, manipulation, and assembly of deformable
objects typical to manufacturing applications. Frontiers
in Robotics and AI, 2022.

[38] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen
Lo, et al. Segment anything. arXiv preprint
arXiv:2304.02643, 2023.

[39] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef
Sivic. CosyPose: Consistent multi-view multi-object 6D
pose estimation. In European Conference on Computer
Vision, 2020.

[40] Yann Labbé, Lucas Manuelli, Arsalan Mousavian,
Stephen Tyree, Stan Birchfield, Jonathan Tremblay,

https://proceedings.mlr.press/v164/chen22a/chen22a.pdf
https://proceedings.mlr.press/v164/chen22a/chen22a.pdf
https://arxiv.org/pdf/1603.03788.pdf
https://arxiv.org/pdf/1603.03788.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9dfb5bc27e2d046199b38739e4ce64bd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9dfb5bc27e2d046199b38739e4ce64bd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9dfb5bc27e2d046199b38739e4ce64bd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://arxiv.org/pdf/2305.09644.pdf
https://arxiv.org/pdf/2305.09644.pdf
https://arxiv.org/pdf/2305.09644.pdf
https://arxiv.org/pdf/1703.01541.pdf
https://arxiv.org/pdf/1703.01541.pdf
https://trimsh.org/
https://www.computer.org/csdl/proceedings-article/robot/1989/00099967/12OmNzfXazw
https://www.computer.org/csdl/proceedings-article/robot/1989/00099967/12OmNzfXazw
https://www.computer.org/csdl/proceedings-article/robot/1989/00099967/12OmNzfXazw
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9560844
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9560844
https://github.com/pafoster/path_signatures_introduction
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9982262
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9982262
https://arxiv.org/pdf/2310.13819.pdf
https://arxiv.org/pdf/2310.13819.pdf
https://arxiv.org/pdf/1711.09874.pdf
https://arxiv.org/pdf/1711.09874.pdf
https://dev.intelrealsense.com/docs/depth-post-processing
https://dev.intelrealsense.com/docs/depth-post-processing
https://dev.intelrealsense.com/docs/self-calibration-for-depth-cameras
https://dev.intelrealsense.com/docs/self-calibration-for-depth-cameras
https://dev.intelrealsense.com/docs/tuning-depth-cameras-for-best-performance
https://arxiv.org/pdf/2210.13702.pdf
https://arxiv.org/pdf/2210.13702.pdf
https://arxiv.org/pdf/2210.13702.pdf
https://arxiv.org/pdf/2305.12821.pdf
https://arxiv.org/pdf/2305.12821.pdf
https://arxiv.org/pdf/1503.02531.pdf
https://arxiv.org/pdf/1503.02531.pdf
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://arxiv.org/pdf/2208.00319.pdf
https://arxiv.org/pdf/2208.00319.pdf
https://proceedings.mlr.press/v162/jia22a/jia22a.pdf
https://proceedings.mlr.press/v162/jia22a/jia22a.pdf
https://github.com/patrick-kidger/signatory
https://github.com/patrick-kidger/signatory
https://github.com/patrick-kidger/signatory
https://proceedings.neurips.cc/paper/2019/file/d2cdf047a6674cef251d56544a3cf029-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d2cdf047a6674cef251d56544a3cf029-Paper.pdf
https://ieeexplore.ieee.org/document/8957300/
https://ieeexplore.ieee.org/document/8957300/
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=935275
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=935275
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=935275
https://arxiv.org/abs/2304.02643
https://arxiv.org/pdf/2008.08465.pdf
https://arxiv.org/pdf/2008.08465.pdf

Justin Carpentier, Mathieu Aubry, Dieter Fox, and Josef
Sivic. MegaPose: 6D pose estimation of novel objects
via render & compare. In Conference on Robot Learning,
2022.

[41] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen,
Vladlen Koltun, and Marco Hutter. Learning quadrupedal
locomotion over challenging terrain. Science Robotics,
2020.

[42] Youngwoon Lee, Edward S Hu, and Joseph J Lim.
IKEA furniture assembly environment for long-horizon
complex manipulation tasks. In IEEE International
Conference on Robotics and Automation, 2021.

[43] Wayve Technologies Ltd. Robot car talk: Introducing
Wayve’s new AI model LINGO-1, 2023.

[44] Kevin M. Lynch and Frank C. Park. Modern Robotics:
Mechanics, Planning, and Control. Cambridge Univer-
sity Press, 2017.

[45] Terry J Lyons. Differential equations driven by rough
signals. Revista Matemática Iberoamericana, 1998.

[46] Miles Macklin. Warp: A high-performance Python
framework for GPU simulation and graphics, 2022.

[47] Miles Macklin, Kenny Erleben, Matthias Müller, Nut-
tapong Chentanez, Stefan Jeschke, and Zach Corse. Lo-
cal optimization for robust signed distance field collision.
ACM Computer Graphics and Interactive Techniques,
2020.

[48] Denys Makoviichuk and Viktor Makoviychuk. rl-games:
A high-performance framework for reinforcement learn-
ing, 2022.

[49] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong
Guo, Michelle Lu, Kier Storey, Miles Macklin, David
Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa,
and Gavriel State. Isaac Gym: High performance GPU-
based physics simulation for robot learning. In Neural In-
formation Processing Systems, Datasets and Benchmarks
Track, 2021.

[50] Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Ireti-
ayo Akinola, Yashraj Narang, Linxi Fan, Yuke Zhu, and
Dieter Fox. MimicGen: A data generation system for
scalable robot learning using human demonstrations. In
Conference on Robot Learning, 2023.

[51] Andrew S Morgan, Bowen Wen, Junchi Liang, Ab-
deslam Boularias, Aaron M Dollar, and Kostas Bekris.
Vision-driven compliant manipulation for reliable, high-
precision assembly tasks. In Robotics: Science and
Systems, 2021.

[52] Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Cathera
Yang, Xuanlin Li, Stone Tao, Zhiao Huang, Zhiwei Jia,
and Hao Su. ManiSkill: Generalizable manipulation
skill benchmark with large-scale demonstrations. In
Neural Information Processing Systems, Datasets and
Benchmarks Track, 2021.

[53] Yashraj Narang, Balakumar Sundaralingam, Miles Mack-
lin, Arsalan Mousavian, and Dieter Fox. Sim-to-real
for robotic tactile sensing via physics-based simulation
and learned latent projections. In IEEE International

Conference on Robotics and Automation, 2021.
[54] Yashraj Narang, Kier Storey, Iretiayo Akinola, Miles

Macklin, Philipp Reist, Lukasz Wawrzyniak, Yunrong
Guo, Adam Moravanszky, Gavriel State, Michelle Lu,
et al. Factory: Fast contact for robotic assembly. In
Robotics: Science and Systems, 2022.

[55] Yashraj Narang, Kier Storey, Iretiayo Akinola, Miles
Macklin, Philipp Reist, Lukasz Wawrzyniak, Yunrong
Guo, Adam Moravanszky, Gavriel State, Michelle Lu,
et al. Factory documentation, 2022.

[56] Andrew Y Ng and Stuart Russell. Algorithms for inverse
reinforcement learning. In International Conference on
Machine Learning, 2000.

[57] NVIDIA. NVIDIA Isaac Sim, 2024.
[58] National Institute of Standards and Technology.

NIST Manufacturing Objects and Assemblies Dataset
(MOAD), 2023.

[59] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel
Van de Panne. DeepMimic: Example-guided deep re-
inforcement learning of physics-based character skills.
ACM Transactions On Graphics, 2018.

[60] Xue Bin Peng, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In IEEE
International Conference on Robotics and Automation,
2018.

[61] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-
Wei Lee, Jie Tan, and Sergey Levine. Learning agile
robotic locomotion skills by imitating animals. Robotics:
Science and Systems, 2020.

[62] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wo-
jciech Zaremba, and Pieter Abbeel. Asymmetric actor
critic for image-based robot learning. arXiv preprint
arXiv:1710.06542, 2017.

[63] Dean A Pomerleau. Alvinn: An autonomous land vehicle
in a neural network. Neural Information Processing
Systems, 1988.

[64] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas. PointNet: Deep learning on point sets for 3D
classification and segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[65] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta,
Giulia Vezzani, John Schulman, Emanuel Todorov, and
Sergey Levine. Learning complex dexterous manipula-
tion with deep reinforcement learning and demonstra-
tions. In Robotics: Science and Systems, 2017.

[66] Fabio Ramos, Rafael Carvalhaes Possas, and Dieter Fox.
BayesSim: Adaptive domain randomization via proba-
bilistic inference for robotics simulators. In Robotics:
Science and Systems, 2019.

[67] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J Black. Generating 3D faces using convolu-
tional mesh autoencoders. In European Conference on
Computer Vision, 2018.

[68] Scott Reed, Konrad Zolna, Emilio Parisotto, Ser-
gio Gomez Colmenarejo, Alexander Novikov, Gabriel

https://arxiv.org/pdf/2212.06870.pdf
https://arxiv.org/pdf/2212.06870.pdf
https://arxiv.org/pdf/2010.11251.pdf
https://arxiv.org/pdf/2010.11251.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9560986
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9560986
https://wayve.ai/thinking/lingo-natural-language-autonomous-driving/
https://wayve.ai/thinking/lingo-natural-language-autonomous-driving/
http://hades.mech.northwestern.edu/images/2/25/MR-v2.pdf
http://hades.mech.northwestern.edu/images/2/25/MR-v2.pdf
https://github.com/NVIDIA/warp
https://github.com/NVIDIA/warp
https://dl.acm.org/doi/10.1145/3384538
https://dl.acm.org/doi/10.1145/3384538
https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games
http://arxiv.org/abs/2108.10470
http://arxiv.org/abs/2108.10470
https://arxiv.org/pdf/2310.17596.pdf
https://arxiv.org/pdf/2310.17596.pdf
https://arxiv.org/pdf/2106.14070.pdf
https://arxiv.org/pdf/2106.14070.pdf
https://arxiv.org/pdf/2107.14483.pdf
https://arxiv.org/pdf/2107.14483.pdf
https://ieeexplore.ieee.org/iel7/9560720/9560666/09561969.pdf
https://ieeexplore.ieee.org/iel7/9560720/9560666/09561969.pdf
https://ieeexplore.ieee.org/iel7/9560720/9560666/09561969.pdf
https://arxiv.org/pdf/2205.03532.pdf
https://github.com/NVIDIA-Omniverse/IsaacGymEnvs/blob/main/docs/factory.md
http://www.datascienceassn.org/sites/default/files/Algorithms%20for%20Inverse%20Reinforcement%20Learning.pdf
http://www.datascienceassn.org/sites/default/files/Algorithms%20for%20Inverse%20Reinforcement%20Learning.pdf
https://developer.nvidia.com/isaac-sim
https://www.robot-manipulation.org/nist-moad
https://www.robot-manipulation.org/nist-moad
https://dl.acm.org/doi/pdf/10.1145/3197517.3201311
https://dl.acm.org/doi/pdf/10.1145/3197517.3201311
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8460528
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8460528
https://arxiv.org/pdf/2004.00784.pdf
https://arxiv.org/pdf/2004.00784.pdf
https://arxiv.org/pdf/1710.06542.pdf
https://arxiv.org/pdf/1710.06542.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Qi_PointNet_Deep_Learning_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Qi_PointNet_Deep_Learning_CVPR_2017_paper.pdf
https://arxiv.org/pdf/1709.10087.pdf
https://arxiv.org/pdf/1709.10087.pdf
https://arxiv.org/pdf/1709.10087.pdf
https://arxiv.org/pdf/1906.01728.pdf
https://arxiv.org/pdf/1906.01728.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Anurag_Ranjan_Generating_3D_Faces_ECCV_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Anurag_Ranjan_Generating_3D_Faces_ECCV_2018_paper.pdf

Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay,
Jost Tobias Springenberg, et al. A generalist agent. arXiv
preprint arXiv:2205.06175, 2022.

[69] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In International Conference
on Artificial Intelligence and Statistics, 2011.

[70] Nikita Rudin, David Hoeller, Philipp Reist, and Marco
Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In Conference on
Robot Learning, 2021.

[71] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar
Gulcehre, Guillaume Desjardins, James Kirkpatrick, Raz-
van Pascanu, Volodymyr Mnih, Koray Kavukcuoglu,
and Raia Hadsell. Policy distillation. arXiv preprint
arXiv:1511.06295, 2015.

[72] Hiroaki Sakoe and Seibi Chiba. Dynamic programming
algorithm optimization for spoken word recognition.
IEEE Transactions on Acoustics, Speech, and Signal
Processing, 1978.

[73] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[74] Oren Spector and Dotan Di Castro. InsertionNet: A
scalable solution for insertion. IEEE Robotics and
Automation Letters, 2021.

[75] Oren Spector, Vladimir Tchuiev, and Dotan Di Castro.
InsertionNet 2.0: Minimal contact multi-step insertion
using multimodal multiview sensory input. arXiv preprint
arXiv:2203.01153, 2022.

[76] Zheng Sun, David Hsu, Tingting Jiang, Hanna Kurni-
awati, and John H Reif. Narrow passage sampling for
probabilistic roadmap planning. IEEE Transactions on
Robotics, 2005.

[77] Bingjie Tang, Michael A Lin, Iretiayo Akinola, Ankur
Handa, Gaurav S Sukhatme, Fabio Ramos, Dieter Fox,
and Yashraj Narang. IndustReal: Transferring contact-
rich assembly tasks from simulation to reality. In
Robotics: Science and Systems, 2023.

[78] Bingjie Tang, Michael A Lin, Iretiayo Akinola, Ankur
Handa, Gaurav S Sukhatme, Fabio Ramos, Dieter Fox,
and Yashraj Narang. IndustRealKit, 2023.

[79] Bingjie Tang, Michael A Lin, Iretiayo Akinola, Ankur
Handa, Gaurav S Sukhatme, Fabio Ramos, Dieter Fox,
and Yashraj Narang. IndustRealLib, 2024.

[80] Bingjie Tang, Michael A Lin, Iretiayo Akinola, Ankur
Handa, Gaurav S Sukhatme, Fabio Ramos, Dieter Fox,
and Yashraj Narang. IndustRealSim, 2024.

[81] Yunsheng Tian, Jie Xu, Yichen Li, Jieliang Luo, Shinjiro
Sueda, Hui Li, Karl DD Willis, and Wojciech Matusik.
Assemble Them All: Physics-based planning for gener-
alizable assembly by disassembly. ACM Transactions on
Graphics, 2022.

[82] Yunsheng Tian, Karl DD Willis, Bassel Al Omari,
Jieliang Luo, Pingchuan Ma, Yichen Li, Farhad Javid,
Edward Gu, Joshua Jacob, Shinjiro Sueda, et al. ASAP:

Automated sequence planning for complex robotic
assembly with physical feasibility. arXiv preprint
arXiv:2309.16909, 2023.

[83] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,
Wojciech Zaremba, and Pieter Abbeel. Domain ran-
domization for transferring deep neural networks from
simulation to the real world. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2017.

[84] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo:
A physics engine for model-based control. In IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, 2012.

[85] Roger Y Tsai and Reimar K Lenz. A new technique for
fully autonomous and efficient 3D robotics hand/eye cali-
bration. IEEE Transactions on Robotics and Automation,
1989.

[86] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin
Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothörl, Thomas Lampe, and Martin Riedmiller.
Leveraging demonstrations for deep reinforcement learn-
ing on robotics problems with sparse rewards. arXiv
preprint arXiv:1707.08817, 2017.

[87] Weikang Wan, Haoran Geng, Yun Liu, Zikang Shan,
Yaodong Yang, Li Yi, and He Wang. UniDex-
Grasp++: Improving dexterous grasping policy learning
via geometry-aware curriculum and iterative generalist-
specialist learning. In International Conference on Com-
puter Vision, 2023.

[88] Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan
Schaal. You Only Demonstrate Once: Category-level ma-
nipulation from single visual demonstration. In Robotics:
Science and Systems, 2022.

[89] Bowen Wen, Wei Yang, Jan Kautz, and Stan Birchfield.
FoundationPose: Unified 6D pose estimation and tracking
of novel objects. CVPR, 2024.

[90] Daniel E. Whitney. Mechanical Assemblies: Their De-
sign, Manufacture, and Role in Product Development.
Oxford University Press, 2004.

[91] Wikipedia. T-symmetry, 2024.
[92] Karl DD Willis, Pradeep Kumar Jayaraman, Hang Chu,

Yunsheng Tian, Yifei Li, Daniele Grandi, Aditya Sanghi,
Linh Tran, Joseph G Lambourne, Armando Solar-
Lezama, et al. JoinABLe: Learning bottom-up assembly
of parametric cad joints. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022.

[93] Jie Xu, Tao Chen, Lara Zlokapa, Michael Foshey, Woj-
ciech Matusik, Shinjiro Sueda, and Pulkit Agrawal. An
end-to-end differentiable framework for contact-aware
robot design. arXiv preprint arXiv:2107.07501, 2021.

[94] Yinzhen Xu, Weikang Wan, Jialiang Zhang, Haoran Liu,
Zikang Shan, Hao Shen, Ruicheng Wang, Haoran Geng,
Yijia Weng, Jiayi Chen, et al. UniDexGrasp: Universal
robotic dexterous grasping via learning diverse proposal
generation and goal-conditioned policy. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2023.

https://arxiv.org/pdf/2205.06175.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://openreview.net/forum?id=wK2fDDJ5VcF
https://openreview.net/forum?id=wK2fDDJ5VcF
https://arxiv.org/abs/1511.06295
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1163055
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1163055
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9420246
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9420246
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9811798
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9811798
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1549937
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1549937
https://arxiv.org/pdf/2305.17110.pdf
https://arxiv.org/pdf/2305.17110.pdf
https://github.com/NVlabs/industrealkit
https://github.com/NVlabs/industreallib
https://github.com/NVIDIA-Omniverse/IsaacGymEnvs/blob/main/docs/industreal.md
https://dl.acm.org/doi/pdf/10.1145/3550454.3555525
https://dl.acm.org/doi/pdf/10.1145/3550454.3555525
https://arxiv.org/pdf/2309.16909.pdf
https://arxiv.org/pdf/2309.16909.pdf
https://arxiv.org/pdf/2309.16909.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8202133
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8202133
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8202133
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6386109
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6386109
https://ieeexplore.ieee.org/document/34770
https://ieeexplore.ieee.org/document/34770
https://ieeexplore.ieee.org/document/34770
https://arxiv.org/pdf/1707.08817.pdf
https://arxiv.org/pdf/1707.08817.pdf
https://arxiv.org/pdf/2304.00464.pdf
https://arxiv.org/pdf/2304.00464.pdf
https://arxiv.org/pdf/2304.00464.pdf
https://arxiv.org/pdf/2304.00464.pdf
https://arxiv.org/pdf/2201.12716.pdf
https://arxiv.org/pdf/2201.12716.pdf
https://arxiv.org/pdf/2312.08344.pdf
https://arxiv.org/pdf/2312.08344.pdf
https://global.oup.com/academic/product/mechanical-assemblies-9780195157826?cc=us&lang=en&
https://global.oup.com/academic/product/mechanical-assemblies-9780195157826?cc=us&lang=en&
https://en.wikipedia.org/wiki/T-symmetry
https://openaccess.thecvf.com/content/CVPR2022/papers/Willis_JoinABLe_Learning_Bottom-Up_Assembly_of_Parametric_CAD_Joints_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Willis_JoinABLe_Learning_Bottom-Up_Assembly_of_Parametric_CAD_Joints_CVPR_2022_paper.pdf
https://arxiv.org/pdf/2107.07501.pdf
https://arxiv.org/pdf/2107.07501.pdf
https://arxiv.org/pdf/2107.07501.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Xu_UniDexGrasp_Universal_Robotic_Dexterous_Grasping_via_Learning_Diverse_Proposal_Generation_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Xu_UniDexGrasp_Universal_Robotic_Dexterous_Grasping_via_Learning_Diverse_Proposal_Generation_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Xu_UniDexGrasp_Universal_Robotic_Dexterous_Grasping_via_Learning_Diverse_Proposal_Generation_CVPR_2023_paper.pdf

[95] Chaoning Zhang, Dongshen Han, Yu Qiao, Jung Uk Kim,
Sung-Ho Bae, Seungkyu Lee, and Choong Seon Hong.
Faster Segment Anything: Towards lightweight SAM for
mobile applications. arXiv preprint arXiv:2306.14289,
2023.

[96] Xiang Zhang, Masayoshi Tomizuka, and Hui Li. Bridg-
ing the sim-to-real gap with dynamic compliance tuning
for industrial insertion. arXiv preprint arXiv:2311.07499,
2023.

[97] Xiang Zhang, Changhao Wang, Lingfeng Sun, Zheng
Wu, Xinghao Zhu, and Masayoshi Tomizuka. Efficient
sim-to-real transfer of contact-rich manipulation skills
with online admittance residual learning. In Conference
on Robot Learning, 2023.

[98] Tony Z Zhao, Jianlan Luo, Oleg Sushkov, Rugile Pevce-
viciute, Nicolas Heess, Jon Scholz, Stefan Schaal, and
Sergey Levine. Offline meta-reinforcement learning for
industrial insertion. In International Conference on
Robotics and Automation (ICRA), 2022.

[99] Xu Zhao, Wenchao Ding, Yongqi An, Yinglong Du, Tao
Yu, Min Li, Ming Tang, and Jinqiao Wang. Fast segment
anything. arXiv preprint arXiv:2306.12156, 2023.

Schunk Gripper

Plug

Socket

Wrist-mounted Camera

Fig. S11. Real-world experimental setup. A Franka Panda robot (with a
wrist-mounted Intel RealSense D435 camera) and a Schunk EGK40 gripper
are mounted to a tabletop. At the beginning of each experiment, a 3D-printed
plug is haphazardly pressed into a foam block or placed in the robot gripper,
and a 3D-printed socket is haphazardly placed in the Schunk gripper.

APPENDIX

A. Problem Description: Real-World Experimental Setup

Figure S11 shows our real-world experimental setup.

B. Problem Description: Formal Problem Statement

Components:
• A robotic manipulator R with end effector EE
• A wrist-mounted RGB-D camera C
• A plug P with known geometry described by mesh MP

• A socket S with known geometry described by mesh MS

Definitions:
• The configuration of robot R is defined by joint angles

Θ ∈ R7.
• The pose of the end effector EE is denoted by XEE ∈
SE(3).

• The robot R is actuated by joint torques T ∈ R7.
• The camera C captures an initial image pair {I0, D0}

consisting of an RGB image I0 and a depth image D0.
Constraints:

• The relationship between the joint angles Θ and the end-
effector pose XEE is governed by a forward-kinematics
model f :

XEE = f(Θ).

• The relationship between the joint torques T , joint angles
Θ, and end-effector pose XEE is governed by a control
law gψ:

T = gψ
(
Θ, XEE , U(t)

)
,

where ψ denotes constant parameters (e.g., control gains)
and U(t) ∈ R7∪SE(3) represents a control target in joint

https://arxiv.org/pdf/2306.14289.pdf
https://arxiv.org/pdf/2306.14289.pdf
https://arxiv.org/pdf/2311.07499.pdf
https://arxiv.org/pdf/2311.07499.pdf
https://arxiv.org/pdf/2311.07499.pdf
https://proceedings.mlr.press/v229/zhang23e.html
https://proceedings.mlr.press/v229/zhang23e.html
https://proceedings.mlr.press/v229/zhang23e.html
https://arxiv.org/abs/2110.04276
https://arxiv.org/abs/2110.04276
https://arxiv.org/pdf/2306.12156.pdf
https://arxiv.org/pdf/2306.12156.pdf

space (R7) or task space
(
SE(3)

)
at the current timestep

t. In our application, we use a task-space impedance
controller (Equation 8).

• The initial poses of the end effector EE, plug P , and
socket S are given by

X0
EE ∼ Uniform(a0EE , b

0
EE),

X0
P ∼ Uniform(a0P , b

0
P),

X0
S ∼ Uniform(a0S , b

0
S),

where a and b denote user-defined bounds of the initial-
pose distribution for the corresponding variable, and
initial poses X0

P and X0
S satisfy the constraint that the

convex hulls of meshes MP and MS do not overlap. In
our application, the bounds are specified in Table II.

• The goal pose for the plug XG
P satisfies the constraints

that 1) the convex hulls of meshes MP and MS do
overlap, 2) meshes MP and MS do not intersect, and
3) user-specified surfaces on plug P and socket S are in
contact (typically, an inferior surface of P and superior
surface of S).

Goal: The goal of the assembly task is to use joint angles Θ,
images I0 and D0, and meshes MP and MS to generate the
control inputs U(t) that guide plug P from initial pose X0

P to
goal pose XG

P .

C. Methods: Mesh Preprocessing

We compile a dataset of assemblies based on Assemble
Them All [81], which itself compiles a dataset based on
the Fusion 360 Gallery dataset [92]. The authors of [81]
preprocess the dataset from [92] to ensure that the meshes
are unique, normalized, watertight, and in a fully-assembled
initial state, but the majority of the meshes still exhibit a
minor degree of interpenetration in this state. Fortunately, the
authors of [81] use a simulator with penalty-based contact,
which is robust to minor interpenetration [93]; nevertheless,
most widely-used robotics simulators (e.g., [49]) enforce non-
penetration constraints, which causes initially-interpenetrating
parts to exhibit highly unstable dynamics. Furthermore, inter-
penetrating rigid parts cannot be assembled in the real world.
Finally, the meshes from [81] are unitless and have a wide
range of relative sizes; for any particular choice of units, many
are infeasible to manipulate with widely-used research robots.
Thus, we preprocess meshes from [81] such that they can be
used in robotics simulators and assembled in reality.

Specifically, we preprocess each mesh as follows:
1) Scaling: We choose units of meters, draw an oriented

bounding box, and scale the mesh such that the longest
edge of the bounding box is 10 cm, allowing it to be
grasped by most robotic manipulators used in research.

2) Reorientation: We reorient the mesh such that the
primary axis of assembly (e.g., the insertion direction)
is aligned with the global z-axis.

3) Translation: We translate the mesh such that the bottom
surface of the mesh is coplanar with the global origin
when the mesh is in its assembled state.

4) Depenetration and Clearance: If the mesh is a plug,
we temporarily instantiate its corresponding socket. For
each vertex on the plug, we compute its signed distance
to the socket along the vertex normal using Warp [46];
if the distance is negative (corresponding to interpen-
etration) or less than a desired radial clearance of 0.5
mm, we translate the vertex backward along its normal
until achieving the desired clearance. Occasionally, this
procedure produces unexpected results, such as when the
plug is very thin or the socket is hollow; in such cases,
we perform manual corrections in Blender.

5) Chamfering (optional): We chamfer the contacting
edges of the plug and socket using Blender. Chamfers
are extremely common in assemblies, as they facilitate
manual assembly, reduce stress concentrations, and re-
move burrs; for a cylindrical peg, chamfer sizes of 1

10 to
1
4 of the diameter are standard. As a typical plug in our
dataset has a diameter ∼10 mm, we apply chamfers with
a length of 1 mm and angle of 45 degrees. We provide
chamfered and unchamfered versions of our meshes for
use in simulation; in addition, we 3D print the chamfered
versions for use in the real world, as our printer produces
rough surfaces near curvature discontinuities.

6) Subdivision: We subdivide the mesh using Trimesh [17]
until producing a minimum of 2000 vertices. During
simulation, we use signed-distance-field (SDF)-based
collisions [47, 54] as implemented in [54, 49, 57]; since
this specific implementation generates a single contact
per triangle, subdivision helps to ensure stable contact
resolution along flat surfaces [55].

D. Methods: Grasp Optimization

The robot must first grasp the plug before assembling or
disassembling the plug and socket, and the success of the
assembly or disassembly process depends on the quality of the
grasp. Thus, for each assembly, we perform an optimization
procedure to determine a grasp that may lead to a high
probability of success during assembly or disassembly. This
high-performing grasp is then used when generating disas-
sembly trajectories, training assembly policies, and deploying
assembly policies in the real world for that assembly. Our
grasp optimization procedure consists of the following steps:

1) Grasp Sampling (Figure S12): We apply a kinematics-
and geometry-based grasp sampling approach based on
[19]. For each assembly, we first initialize the plug and
socket meshes in their assembled state. We instantiate a
robot gripper mesh, randomly sample a surface normal
on the plug mesh, and align the central axis of the
gripper to be collinear with the surface normal. We
then randomly sample a position along this normal and
translate the gripper to that position. We define a grasp
sample as the 6-DOF pose of the gripper in this state.
We reject the grasp sample if 1) the robot hand intersects
the plug or socket meshes, 2) the plug mesh does not
intersect the gripper closing region (i.e., the prismatic

Mesh surface normal
Hand approach vector

(a)

Hand closing region

(b)

Roll

Pitch

Yaw

(c) (d)

β ∈ [−15∘,15∘]
α ∈ [−15∘,15∘]

γ ∈ [−120∘,120∘]

Fig. S12. Grasp sampling and evaluation procedure. We apply a grasp
sampling approach based on [19], and we develop a a physics-based evaluation
procedure. A) We sample a surface normal on the socket mesh, align the
gripper axis with the normal, sample a position along the normal, and translate
the gripper to that position. B) We check if the plug lies within the gripper
closing region. C) We check if the Euler angles of the gripper are within
specified bounds. D) We use simulation to disassemble the plug from the
socket and check whether the plug remains in the gripper fingers.

volume contained between the fully-opened gripper fin-
gers), or 3) the Euler angles of the gripper are outside
of specified bounds ([-15, 15] deg for roll and pitch and
[-120, 120] deg for yaw). The last of these criteria is
designed to ensure that the Franka robot remains in a
region of its workspace with high manipulability. We
repeat this process until generating 100 grasp samples.

2) Physics-Based Evaluation: Although the preced-
ing grasp sampling procedure provides kinematically-
feasible grasps, these samples are not guaranteed to be
stable during the contact-rich interactions experienced
during assembly and disassembly. Thus, we develop a
subsequent physics-based evaluation phase.
For each assembly, we first randomize the pose of the
socket over a wide range (Table II), and we initialize the
plug in its assembled state (i.e., inserted in the socket).
For each of the 100 grasp samples, we execute the grasp
on the plug. We use a task-space impedance controller
[44] to lift the plug from the socket until the convex hull
of the plug no longer intersects the convex hull of the
socket, and we move the robot gripper to a pose in free
space randomly sampled from specified bounds ([-0.05,
0.05] for X- and Y-position, [0, 0.05] for Z-position,
and [-10, 10] deg for roll, pitch, and yaw). We check
whether the grasp is successful (i.e., if the plug remains

Fig. S13. Generated disassembly paths. We generate disassembly paths
via physics simulation and reverse the paths for use in assembly. Here we
visualize 100 disassembly paths for an assembly with a deep socket.

in the gripper fingers until the end of the procedure). We
repeat this procedure 1000 times. Finally, we identify
the grasp sample with the highest success rate and
designate that sample as the highest-performing grasp
for the given assembly. In total, we run 10 million trials
(100 assemblies x 100 grasps per assembly x 1000 trials
per grasp), but we distribute the evaluations over many
parallel environments for efficiency.

Thus, the output of the grasp optimization procedure is a
dictionary that maps each assembly to the highest-performing
grasp for the corresponding plug. This grasp is inherently
collision-free with respect to the socket in the assembled
state, robust to large variations in robot configuration and
plug/socket pose, and robust to contact-rich interactions.

E. Methods: Disassembly Path Generation

Figure S13 shows a visualization of disassembly paths for
a representative assembly.

F. Methods: Reinforcement Learning

We formulate the robotic assembly problem as a Markov
decision process (MDP), where the agent is a simulated robot,
and the environment is a simulated environment containing the
parts to be assembled. We define a state space S , observation
space O, and action space A. Our state-transition dynamics are
defined by T : S×A → S, which is governed by the physical
laws of rigid-body dynamics implemented in our simulator. We
define a randomized initial state distribution ρ0 (Table II) and
reward function R : S → R with discount factor γ ∈ (0, 1].
We constrain our agents to execute actions over episodes of
length N timesteps, and we define shorter learning horizons
of length T timesteps. Finally, our return G is defined as

G(T) = Eπ
[
ΣT−1
t=0 γ

tR(st)
]

(7)

In other words, the return is the expected sum of discounted
rewards over the horizon. The objective is to train a policy
π : O → P(A) that maximizes the return.

Parameter Randomization Range

So
ck

et

X-position (m) [0.40, 0.60]
Y-position (m) [-0.10, 0.10]
Z-position (m) [0.16, 0.18]
roll angle (deg) [-5, 5]
pitch angle (deg) [-5, 5]
yaw angle (deg) [-5, 5]

Pl
ug

(r
el

.t
o

so
ck

et
) X-position (mm) [-10, 10]

Y-position (mm) [-10, 10]
Z-position (mm) [10, 20]
roll angle (deg) [-5, 5]
pitch angle (deg) [-5, 5]
yaw angle (deg) [-5, 5]

Pl
ug

(r
el

.t
o

gr
ip

pe
r) X-position (mm) [-1, 1]

Y-position (mm) [-1, 1]
Z-position (mm) [-1, 1]
roll angle (deg) [-5, 5]
pitch angle (deg) [-5, 5]
yaw angle (deg) [-5, 5]

TABLE II
RANDOMIZATION RANGES FOR INITIAL OBJECT POSES DURING

TRAINING. WE LIST POSITION AND ORIENTATION RANGES FOR THE
FOLLOWING RANDOMIZATION PROCEDURE: FIRST, THE SOCKET POSITION

AND ORIENTATION ARE RANDOMIZED. NEXT, THE PLUG POSITION AND
ORIENTATION ARE RANDOMIZED RELATIVE TO THE SOCKET POSE. THEN,
THE ROBOT IS COMMANDED TO MOVE ITS GRIPPER NEAR THE PLUG POSE.

FINALLY, THE PLUG POSITION AND ORIENTATION ARE RANDOMIZED
AGAIN RELATIVE TO THE GRIPPER POSE. VALUES ARE ALL SAMPLED

FROM UNIFORM DISTRIBUTIONS.

To train policies, we use the proximal policy optimization
(PPO) algorithm [73] due to its well-established performance
over a wide range of simulation and sim-to-real problems [49],
as well as its ease-of-use; we mitigate the low sample effi-
ciency of PPO by using GPU-accelerated SDF-based contact
simulation [54] and a GPU-accelerated PPO implementation
[48]. We use PPO to learn a stochastic policy πθ (i.e., an
actor) parameterized by a neural network with weights θ,
as well as an approximation of the on-policy value function
Vϕ : S → R (i.e., a critic) parameterized by a neural
network with weights ϕ. At evaluation and deployment time,
the actor is deterministic, and the critic is neglected. For
network architectures and hyperparameters, see Table III.

Our observation space provided to the actor consists of
robot-arm joint angles [R7], the current pose of the end
effector (i.e., the pose of the robot-gripper fingertips) [SE(3)],
the goal pose of the end effector [SE(3)], and the pose of the
end effector relative to the current pose [SE(3)] (Table IV).
During training, the goal pose is simply the pose of the end
effector when it is grasping the plug in its highest-performing
grasp pose (Appendix D) while the plug is inserted into
the socket. We avoid including joint velocities, end-effector
velocities, and joint torques in the observation space, as these
measurements exhibit substantial noise in the real world and
can impede sim-to-real transfer; we also avoid including plug
pose, as measuring this quantity typically requires tactile

Parameter Specialist Training Generalist Fine-tuning

MLP network size (actor) [256, 128, 64] [512, 256, 128, 64]
MLP network size (critic) [256, 128, 64] [256, 128, 64]
LSTM network size (actor) 256 256
Horizon length (T) 32 32
Adam learning rate 1e-4 1e-4
Discount factor (γ) 0.99 0.99
GAE parameter (λ) 0.95 0.95
Entropy coefficient 0.0 0.0
Critic coefficient 2 2
Minibatch size 8192 8192
Minibatch epochs 8 8
Clipping parameter (ϵ) 0.2 0.2

TABLE III
NETWORK ARCHITECTURES AND HYPERPARAMETERS USED WITH

PROXIMAL POLICY OPTIMIZATION (PPO). WE LIST OUR SPECIALIST
AND GENERALIST POLICY NETWORK ARCHITECTURES FOR THE ACTOR

AND CRITIC NETWORKS, AS WELL AS OUR MOST CRITICAL PPO
HYPERPARAMETERS. WE USE PPO TO TRAIN SPECIALIST POLICIES FROM

SCRATCH, AS WELL AS FINE-TUNE GENERALIST POLICIES AFTER
DISTILLATION AS DESCRIBED IN SECTION V-D.

sensing [4].
However, we adopt an asymmetric actor-critic strategy [62],

where the states provided to the critic include privileged
information that is not provided to the actor, as the critic is
only used for training and is not deployed in the real world.
Here, the states provided to the critic include joint velocities
[R7], end-effector velocities [R6], and plug pose [SE(3)]. In
addition, to capture real-world control error, perception error,
and sensor noise, we apply uniformly-sampled noise to all
observations of the position and orientation of the socket that
are provided to the actor (Table V), but do not apply noise to
the corresponding states provided to the critic.

Our action space consists of incremental pose targets
[SE(3)], which represent the position and orientation differ-
ence between the current pose xc and the target pose xt; we
choose incremental targets rather than absolute targets in order
to select from a small, bounded spatial range. We pass these
targets to a task-space impedance controller

τ = JT
(
kp(xt ⊖ xc)− kdẋc

)
(8)

where J ∈ R6×7 is the geometric Jacobian; Kp ∈ R6×6 and
Kd ∈ R6×6 are diagonal matrices consisting of proportional
and derivative gains, respectively; ẋc ∈ R6 is the velocity vec-
tor; and xt⊖xc computes the incremental pose target. We use
a task-space impedance controller to generalize actions across
robot configurations and avoid using inertial matrices, which
have not been precisely measured for our robot manipulator.
We superimpose a nullspace controller to softly constrain the
robot to maintain a configuration with high manipulability,
which can be compromised by elbow drift.

Finally, our baseline reward formulation (without imitation)
is derived from [77] and is composed of terms that penalize
distance-to-goal, penalize simulation error, reward task diffi-
culty, and reward success. Specifically, the reward

1) penalizes distance-to-goal through an SDF-based re-
ward, which computes the distance between the current
plug pose and the goal (i.e., assembled) plug pose

Input Dimensions Actor Critic

Arm joint angles 7 ✓ ✓
Fingertip pose 3 (position) + 4 (quaternion) ✓ ✓
Target pose 3 (position) + 4 (quaternion) ✓
Target pose with noise 3 (position) + 4 (quaternion) ✓
Relative target pose with noise 3 (position) + 4 (quaternion) ✓
Arm joint velocities 7 ✓
Fingertip linear velocity 3 ✓
Fingertip angular velocity 3 ✓
Plug pose 3 (position) + 4 (quaternion) ✓
Relative target pose 3 (position) + 4 (quaternion) ✓

TABLE IV
INPUTS TO THE ACTOR AND CRITIC FOR SPECIALIST POLICIES. WE LIST OBSERVATIONS PROVIDED TO THE ACTOR, AS WELL AS OBSERVATIONS AND

STATES PROVIDED TO THE CRITIC.

Parameter Noise Range

Socket X-position [-2, 2] mm
Socket Y-position [-2, 2] mm
Socket Z-position [-2, 2] mm
Socket roll angle [-5, 5] deg
Socket pitch angle [-5, 5] deg
Socket yaw angle [-5, 5] deg

TABLE V
NOISE RANGES FOR OBSERVATIONS OF SOCKET POSE DURING

TRAINING. WE LIST THE RANGES FOR POSITION AND ORIENTATION
NOISE APPLIED TO OBSERVATIONS OF THE SOCKET POSE, WHICH IS USED

TO COMPUTE THE GOAL POSE OF THE END EFFECTOR. VALUES WERE
SAMPLED FROM A UNIFORM DISTRIBUTIONS.

through SDF queries, which are less sensitive to object
symmetries than keypoint-based distance queries,

2) penalizes simulation error through a simulation-aware
policy update (SAPU), which computes the maximum
interpenetration distance at each timestep, weights the
reward in inverse proportion to distance if it is less than
a threshold, and does not update the reward otherwise,

3) rewards task difficulty through a sampling-based curricu-
lum (SBC), which increases the lower bound (but not the
upper bound) of the range of initial-pose randomization
as the agent becomes more proficient at the task, and
weights the return in proportion to task difficulty.

We defer precise descriptions to [77] and implementation de-
tails to [80]. Whereas [77] also rewarded success by providing
a bonus at the end of every episode if a keypoint distance
between the plug and its goal fell below a threshold on the
final timestep, we instead reward success with a bonus at the
end of every horizon if the translational distance between the
plug and its goal falls below a threshold at any timestep.

Precisely, our return over each horizon is given as

G(T) = wSBC

T−1∑
t=0

(
ωSAPU (ωSDFRSDF + ωIRI)

)
+Rsucc

(9)
where wSBC is the weighting factor based on task difficulty,
as determined by the SBC algorithm; ωSAPU is the weighting
factor based on simulation error, as determined by the SAPU
algorithm; RSDF is the distance-to-goal reward, as determined

by the SDF-based reward; RI is the imitation-based reward,
as described in detail in the main text; ωSDF and ωI are
hyperparameters to determine the relative importance of the
distance-to-goal reward and the imitation-based reward; and
Rsucc is a success bonus applied at the end of each horizon.
Parameters ωSDF and ωI are tuned simply so that RSDF and
RI fall within the same order of magnitude.

G. Methods: Dynamic Time Warping

At each timestep, we aim to determine the best reversed
disassembly path for the robot to mimic. More specifically,
given the assembly path the robot has already traversed during
the episode, we aim to select the closest disassembly path to
imitate. The first method we leverage for this procedure is
dynamic time warping (DTW), which is described as follows:

Consider a time sequences a = [a1, a2, ..., aP], which might
represent the path the robot has traversed, and a time sequence
b = [b1, b2, ..., bQ], which might represent a disassembly path;
we aim to compute the distance between these paths. If we
repeat this procedure for all disassembly paths, we can select
the closest disassembly path as desired.

DTW matches each point ai to one or more points bj , and
vice versa. The matching process minimizes a cost C(a, b),
which is defined as the sum of a manually-defined distance
function (typically, Euclidean distance) between each point
ai and its match(es) from b. Moreover, the matching process
satisfies the following constraints:

1) Point a1 must match with at least point b1 (i.e., first
points are aligned)

2) Point aP must match with at least point bQ (i.e., last
points are aligned)

3) All matches must be monotonic (i.e., if point ai matches
with point bj , then point ai+1 cannot match with point
bj−1 and point ai−1 cannot match with point bj+1)

Ultimately, DTW returns the total distance between the
optimal matches of sequence a and sequence b. We leverage
the fast DTW implementation from Soft-DTW [16].

Algorithm G provides pseudocode for a naive imple-
mentation of DTW. In this implementation, a matrix M is
constructed, where each M [i][j] describes the minimum cost
of matching a[i] with b[j]. The implementation loops through

each M [i][j] and assigns its value to the distance between a[i]
and b[j], plus the minimum accumulated cost of all previous
possible matches. Importantly, only 3 such accumulated costs
need to be considered: the accumulated costs of matching
a[i− 1] and b[j], a[i] and b[j − 1], and a[i− 1] and b[j − 1].
Intuitively, these are the only accumulated costs that 1) leave
no previous point unmatched, and 2) are compliant with
constraint 3. The value of element M [P][Q] is the final value
assigned in the loop and represents the minimum accumulated
cost C∗(a, b) over all possible matches between a and b.

Algorithm 1 Dynamic Time Warping (DTW)
Require: Sequence a of length P and sequence b of length

Q
Ensure: DTW distance between a and b

1: function DTWDISTANCE(a, b)
2: Define matrix M of shape (P + 1, Q+ 1)
3: Initialize all elements of M to ∞
4: M [0][0]← 0
5: for i← 1 to P do
6: for j ← 1 to Q do
7: d← ∥a[i]− b[j]∥2
8: M [i][j] ← d + min(M [i − 1][j],M [i][j −

1],M [i− 1][j − 1])
9: end for

10: end for
11: return M [P][Q]
12: end function

H. Methods: Signature Transform

At each timestep, we aim to select the best reversed disas-
sembly path for the robot to mimic. More specifically, given
the assembly path the robot has already traversed during the
episode, we aim to select the closest disassembly path to
imitate. The second method we explore for this procedure is
the signature transform. For an interactive introduction, see
[20], and for a detailed overview, see [12].

Consider a continuous-time 3-dimensional path given by
X : [a, b] → R3. For example, we can define the path
p(t)a,b = (x(t), y(t), z(t))a,b, where x(t), y(t), and z(t) might
represent the x, y, and z coordinates of the path the robot
has already traversed for t ∈ [a, b]. We can also consider a
second path, which might represent a disassembly path; we
aim to compute the distance between these paths by simply
computing the L2 norm between their path signatures, which
are defined next. If we repeat this procedure for all disassembly
paths, we can select the closest disassembly path as desired.

Focusing on the path p(t)a,b, the path signature is given by
the collection of all possible path integrals between x(t), y(t),
and z(t). Specifically, the first level of the path signature is

S1(p(t))a,t =
(
S1(x(t))a,t, S1(y(t))a,t, S1(z(t))a,t

)
, (10)

where

S1(x(t))a,t =

∫ t

a

dx(t) = x(t)− x(a) (11)

S1(y(t))a,t =

∫ t

a

dy(t) = y(t)− y(a) (12)

S1(z(t))a,t =

∫ t

a

dz(t) = z(t)− z(a) (13)

In this case, there are 3 total path integrals, and each integral
only involves a single coordinate of the path p(t).

Next, the second level of the path signature is

S2(p(t))a,t =
(
S2(x(t), x(t))a,t, S2(x(t), y(t))a,t,

..., S2(z(t), z(t))a,t
)
, (14)

where

S2(x(t), x(t))a,t =

∫ t

a

S(x(t))a,tdx(t) (15)

S2(x(t), y(t))a,t =

∫ t

a

S(x(t))a,tdy(t) (16)

... = ...

S2(z(t), z(t))a,t =

∫ t

a

S(z(t))a,tdz(t) (17)

In this case, there are 9 total path integrals, and each individual
integral involves 2 coordinates of the path p(t). (Note that
when a = 0, Equation 16 can be interpreted as the area under
the curve when x(t) is plotted against y(t).) Further levels of
the continuous-time path signature can be derived in similar
fashion, where the ith level consists of 3i path integrals.

The full continuous-time path signature S(p(t))a,b for t ∈
[a, b] consists of the ordered set of all integrals. Specifically,

S(p(t))a,b = (1, S1(p(t))a,b, S2(p(t))a,b, ...) (18)

where the first element is equal to 1 by convention. Conve-
niently, because path integrals are translation invariant (i.e.,
unaffected if the integrand is shifted by a constant) and
reparameterization invariant (i.e., unaffected if the integrand
traces its path slower or faster in time), path signatures
inherit these properties. Thus, they are an extremely convenient
representation for time-series data that may have translational
offsets and/or disparate discretization or sampling schemes.
Finally, the signature transform is simply the functional
T (p(t))a,b : p(t)a,b → S((p(t))a,b that takes a path as input
and produces the path signature as output for t ∈ [a, b].

As our data is not continuous, but discrete, we use the
discrete-time form of the path signature. The first level
S1(p[N])A,N , where A and N are the first and current timestep

indices, respectively, can be expressed as

S1(x[N])A,N =
N−1∑
i=A

(x[i+ 1]− x[i]) = x[N]− x[A]

(19)

S1(y[N])A,N =
N−1∑
i=A

(y[i+ 1]− y[i]) = y[N]− y[A]

(20)

S1(z[N])A,N =
N−1∑
i=A

(z[i+ 1]− z[i]) = z[N]− z[A]

(21)

The second level S2(p[N])A,N can be expressed as

S2(x[N], x[N])A,N =
N−1∑
i=A

(x[i+ 1]− x[A])(x[i+ 1]− x[i])

(22)

S2(x[N], y[N])A,N =
N−1∑
i=A

(x[i+ 1]− x[A])(y[i+ 1]− y[i])

(23)
... = ...

S2(z[N], z[N])A,N =
N−1∑
i=A

(z[i+ 1]− z[A])(z[i+ 1]− z[i])

(24)

As in continuous time, further levels of the discrete-time path
signature can be derived in similar fashion, where the ith level
consists of 3i path summations.

Finally, the full discrete-time path signature S(p[N])A,B for
N ∈ [A,B], where B is the last timestep index, consists of
the ordered set of all summations. Specifically,

S(p[N])A,B = (1, S1(p[N])A,B , S2(p[N])A,B , ...) (25)

We leverage the fast, GPU-based signature transform im-
plementation from Signatory [34].

I. Methods: Point-Cloud Autoencoder

Our specialist policies do not take part geometry as an
observation, as geometry is constant for each policy and
would not benefit policy learning. However, our generalist
policy does take part geometry as an observation; unlike
comparatively-imprecise tasks such as part reorientation [11],
assembling a wide range of parts without knowledge of
geometry would be exceedingly difficult. At the same time, the
meshes for our parts typically consist of 1000-5000 vertices
and edges. We may consider A) taking mesh data directly
as input to the policy or B) pretraining a network to extract a
latent representation of mesh data and passing the latent vector
to the policy. We choose option B, as directly consuming mesh
data would require an exceptionally-large observation space,
and learning a latent representation and an assembly policy
simultaneously would be computationally challenging.

Encoder
(PointNet) D

ec
od

er

(F
C

N)z

Original Point Clouds
(Sampled from Mesh) Reconstructed Point Clouds

Fig. S14. Schematic of the point-cloud autoencoder. We pass a point cloud
as input to a PointNet encoder based on [52] to produce a latent vector z,
which is in turn passed to a fully-convolutional decoder based on [87]. The
autoencoder is trained to minimize reconstruction loss.

Specifically, we train an autoencoder on a large set of
meshes M . Each mesh mi ∈ M consists of (Vi, Ei), where
V are the vertices and E are the (undirected) edges. At each
iteration, we sample a batch of meshes B ⊂ M ; for each
mi ∈ B, we sample a point cloud Pi online, with each point
pji ∈ Pi lying on the surface of mi. The point cloud Pi is
passed to a PointNet encoder [64] based on the implementation
from [52] to produce a latent vector zi. Vector zi is passed to a
fully-convolutional decoder based on the implementation from
[87] to produce a reconstructed point cloud Qi (Figure I). The
network is trained to minimize reconstruction loss, defined
here as the chamfer distance between Pi and Qi:

LCD =
1

|Pi|
∑
p∈Pi

min
q∈Qi

∥p− q∥22 +
1

|Qi|
∑
q∈Qi

min
p∈Pi

∥p− q∥22 .

In our final training procedure, |M | = 1000 meshes from
[81], N = 2000, and |zi| = 32.

We briefly note two aspects of our training procedure that
improve reconstruction accuracy: 1) We normalize the mean
and variance of the vertices Vi for each mesh mi prior to
training, such that the network is not biased by a non-uniform
distribution of mesh sizes, and 2) We increase the depth of the
encoder relative to the decoder, such that the encoder can learn
a more abstract latent representation, whereas the decoder is
discouraged from overfitting to the input data.

Future work may focus on training an autoencoder with
explicit or implicit surface information, which we hypothesize
can improve the success rate of the generalist policy. Possible
methods include 1) augmenting each point pji with the local
surface normal, 2) using a graph neural net (e.g., a graph
convolutional network) that takes both points and edges as
input [67, 53], or 3) learning low-dimensional signed-distance-
field (SDF) representations of the objects [13].

J. Results: Specialist Policies (Continued)

Figure S16 shows the results of our final training approach
for specialist policies over all 100 assemblies. Figure S17
shows an additional evaluation where the results are compared
to the Follow Trajectory baseline (Section VI-A). Our ap-
proach outperforms Follow Trajectory on 99 out of the 100
assemblies, typically by a significant margin.

Loading [MathJax]/extensions/MathMenu.js

00340

00768 00615

00255 01026

00470

00030

00597 00783

00015

00141

00133

Fig. S15. t-SNE visualization of geometric representations of 100 assemblies. As in Figure 5, we plot the t-SNE representations of all 100 assemblies.
Here, we show assemblies sampled from the same or nearby clusters; samples that are close in the lower-dimensional space have similar visual properties.

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 R
at

e

Loading [MathJax]/extensions/MathMenu.js

10 20 30 40 50 60 70 80 90 100
Number of Assets

Su
cc

es
s

Ra
te

Fig. S16. Simulation-based evaluation of final training approach for specialist policies. For each of the 100 assemblies, we train a specialist policy with
the final AutoMate learning approach. For this approach, we train 5 random seeds, select the best seed, and evaluate it 5 times over 1000 trials. AutoMate
maintains consistent performance across the majority of the assemblies and achieves the critical milestone of solving approximately 80% of the assemblies
with 80% success rates or higher under substantial initial-pose randomization (Table II) and observation noise (Table V).

K. Results: Robustness of Specialist Policies to Initial-Pose
Randomization in Simulation

We evaluate our specialist policies in simulation with differ-
ent levels of initial plug- and socket-pose randomization for
10 assemblies. Figure S18 shows success rates at different
randomization levels, and Table VI provides the correspond-
ing randomization ranges and quantitative data. The policies
maintain high performance when tested in-distribution and
moderately degrade when out-of-distribution (i.e., with larger
initial-pose randomization than seen during training).

Nevertheless, out-of-distribution generalization is a chal-
lenge for nearly all learning-based methods; one simple and
effective remedy is to simply fine-tune the policies on out-of-
distribution data. Thus, in simulation, we fine-tune our policies
with twice the initial plug- and socket-pose randomization seen
during original training, and we evaluate the policies over this
larger range. Figure S19 shows the resulting success rates. As

predicted, fine-tuning is an effective strategy for allowing our
policies to adapt to larger initial-pose randomization.

L. Results: Robustness of Specialist Policies to Observation
Noise in Simulation

We evaluate our specialist policies with different levels of
observation noise applied to the socket pose for 10 assemblies.
For instructive purposes, we also compare the results to the
Follow Trajectory baseline (Section VI-A). Figure S20 illus-
trates our results, and Table VII provides the corresponding
noise levels and quantitative data. The policies significantly
outperform the Follow Trajectory baseline over all assemblies.
In addition, the policies maintain high performance when
tested in-distribution and moderately degrade when out-of-
distribution (i.e., with larger observation noise than seen during
training), particularly as the magnitudes of observation noise
approach critical length scales of the plug and socket.

00783
00014

00437
00360

01102
00741

00480
00410

01029
00726

00318
00319

00638
00329

00078
00514

00192
01053

00141
00863

00537
00855

00255
01132

00077
00703

00648
00301

00422
00471

00062
00615

00210
00597

00486
00444

00143
00007

00506
00190

00553
00117

00581
00186

01026
00032

00470
00004

00074
00308

0

0.2

0.4

0.6

0.8

1

RL Policy Follow Trajectory

Asset IDs

S
uc

ce
ss

 R
at

e

Loading [MathJax]/extensions/MathMenu.js

00320
00015

00731
01129

00340
01041

01036
00768

00681
00296

00417
01136

00028
00346

00446
00110

00388
00271

00081
00863

00187
00860

00021
00293

00659
00831

00256
00686

00175
00016

00559
00083

00030
00614

00211
01125

00042
00138

00499
00213

00755
00652

00103
00163

01079
00649

00133
00345

01092
0

0.2

0.4

0.6

0.8

1

RL Policy Follow Trajectory

Asset IDs

S
uc

ce
ss

 R
at

e

Loading [MathJax]/extensions/MathMenu.js

Fig. S17. Simulation-based comparison of final training approach for specialist policies with Follow Trajectory baseline. For each of the 100 assemblies,
we evaluate both the final AutoMate learning approach and the Follow Trajectory method 5 times over 1000 trials. Each pair of bars shows a comparison
between AutoMate and Follow Trajectory for a different assembly; the bottom plot is a continuation of the top plot. AutoMate significantly outperforms
Follow Trajectory on all assemblies except for assembly 00614, where the success rates are within 1%.

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1

No Noise
Minor Noise
Baseline
High Noise
Double Baseline

Observation Noise

Socket Randomization

Plug Randomization

Loading [MathJax]/extensions/MathMenu.js

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1

No Noise
Minor Noise
Baseline
High Noise
Double Baseline

Observation Noise

Socket Randomization

Plug Randomization

Loading [MathJax]/extensions/MathMenu.js

No Randomization 1.5x BaselineBaseline 2x Baseline0.5x Baseline

Su
cc

es
s

R
at

e

Fig. S18. Simulation-based evaluation of specialist policies with different levels of initial-pose randomization. For each assembly, we train our specialist
policies with a baseline level of initial-pose randomization. We then evaluate our policies on in-distribution and out-of-distribution levels of randomization,
indicated by the legend. For each experiment, we run 5 separate evaluations of 1000 trials each and compute mean success rates. Table VI provides the
specific randomization ranges.

00320
00015

00731
01129

00340
01041

01036
00768

00681
00296

0

0.2

0.4

0.6

0.8

1

Baseline Finetuned

Asset IDs

S
uc

ce
ss

 R
at

e

Loading [MathJax]/extensions/MathMenu.js

Plug Randomization

00320
00015

00731
01129

00340
01041

01036
00768

00681
00296

0

0.2

0.4

0.6

0.8

1

Baseline Finetuned

Asset IDs

S
uc

ce
ss

 R
at

e

Loading [MathJax]/extensions/MathMenu.js

Socket Randomization

Fig. S19. Simulation-based evaluation of specialist policies fine-tuned with increased initial-pose randomization. For each assembly, we fine-tune the
corresponding specialist policy with twice the initial plug- and socket-pose randomization seen during training; we then evaluate our policies over this larger
range. For each policy, we run 5 separate evaluations of 1000 trials each and compute mean success rates. We compare to the non-fine-tuned policy.

Randomization Socket Pose Randomization Plug Pose Randomization (rel. to socket)
Range XY Pos. (cm) Z Pos. (cm) Rot. (deg) Success (%) XY Pos. (cm) Z Pos. (cm) Rot. (deg) Success (%)

No Randomization 0 0 0 94.92±9.00 0 0 0 94.52±9.06
0.5x Baseline [−5, 5] [−0.5, 0.5] [−2.5, 2.5] 94.24±10.47 [−0.5, 0.5] [0, 1] [−2.5, 2.5] 93.84±9.94
Baseline [−10, 10] [−1.0, 1.0] [−5.0, 5.0] 94.12±10.31 [−1.0, 1.0] [0, 2] [−5.0, 5.0] 94.12±10.31
1.5x Baseline [−15, 15] [−1.5, 1.5] [−7.5, 7.5] 88.21±11.34 [−1.5, 1.5] [0, 3] [−7.5, 7.5] 86.43±10.85
2x Baseline [−20, 20] [−2.0, 2.0] [−10.0, 10.0] 80.63±12.09 [−2.0, 2.0] [0, 4] [−10.0, 10.0] 75.56±12.01

TABLE VI
SIMULATION-BASED EVALUATION OF SPECIALIST POLICIES WITH DIFFERENT LEVELS OF INITIAL-POSE RANDOMIZATION. HERE WE PROVIDE

RANDOMIZATION RANGES AND QUANTITATIVE DATA CORRESPONDING TO THE PLOTS IN FIGURE S18. BASELINE REFERS TO THE LEVEL OF
INITIAL-POSE RANDOMIZATION UNDER WHICH THE POLICIES WERE TRAINED. THE LEFT COLUMN LISTS ALL LEVELS OF RANDOMIZATION UNDER

WHICH THE POLICIES WERE TESTED.

As with initial-pose randomization, we explore whether a
fine-tuning strategy can improve performance. Specifically, in
simulation, we fine-tune our policies with twice the observa-
tion noise seen during original training, and we evaluate the
policies over this larger range. Figure S21 shows the resulting
success rates. As demonstrated, fine-tuning can moderately
improve performance under higher levels of observation noise.

M. Results: Generalist Policies

As a supplementary evaluation question, we ask, what is
the scaling law between generalist performance and the
number of specialists used in training?

To answer this question, we consider batches of {10, 20,
..., 80} assemblies, where each batch is evenly sampled
in t-SNE space (Figure S15). For each batch, we train a
generalist policy with RL + DAgger + RL (w/SBC), from
all specialists corresponding to that batch of assemblies. We
evaluate each generalist policy over all the assemblies in its
corresponding batch over 5000 trials, for a total of 1.8M trials.
Figure S22 shows our results. We observe high success rates
for a generalist trained from 10 and 20 specialists (≈80%),
a steep drop for a generalist trained on 30 or 40 specialists
(≈55% and ≈30%), and consistent, low success rates for a
generalist trained on more specialists (≈20%). In future work,
we aspire to formulate methods that can preserve generalist
performance as the number of assemblies increases.

N. Methods: Perception

1) Camera Calibration and Tuning: We observe the envi-
ronment with a single wrist-mounted Intel RealSense D435
RGB-D camera. It is a common sentiment among robotics
researchers that off-the-shelf cameras may not be sufficient
for high-precision tasks; moreover, it is common practice
among the robot learning community to compensate for the
weaknesses of such cameras primarily via data-driven strate-
gies (e.g., increased data collection, data augmentation, etc.).
However, we have found that diligent camera calibration and
tuning can greatly improve the RGB image quality, point cloud
quality, and performance in downstream perception modules
(e.g., pose estimators), to a level sufficient for high-precision
assembly of parts far smaller than the robot manipulator.

Specifically, we take the following steps:
• Extrinsics calibration: We calibrate our absolute extrin-

sics (i.e., the pose of our RGB camera in the robot frame)

using the procedure described in [77], with a lightly-
modified implementation of the corresponding code in
[79]. The procedure consists of moving the end effector to
randomized target poses, capturing an image of an April-
Tag in each pose, computing the pose of the AprilTag in
the camera frame from each image, and using the Tsai-
Lenz algorithm [85] to compute the extrinsics matrix. We
do not calibrate our relative intrinsics (i.e., the pose of
our depth camera with respect to our RGB camera) and
rely on the RealSense-provided matrix.

• Intrinsics calibration: We calibrate our intrinsics matrix
using the procedure described in the RealSense whitepa-
per for on-chip self-calibration [25]. The procedure con-
sists of capturing an image of a textured target and
running the manufacturer-provided calibration function.

• Camera settings: We tune our camera settings using
the suggestions provided in the RealSense whitepapers
on tuning depth cameras [26] and depth image post-
processing [24]. The most impactful settings were

– RGB and depth camera exposure: We tune the expo-
sure to maximize the quality of the color and depth
map images on our assemblies, rather than using the
default autoexposure. Furthermore, we tune the RGB
and depth camera exposures simultaneously (i.e., set
them to the same value), rather than separately.

– Laser power: We increase power from its default
value to increase the density of the depth image.

– Spatial hole-filling: We apply a hole-filling filter in
post-processing to repair holes in the depth image.

Finally, to optimize the performance of our downstream
pose estimator (described next), we maximized RGB camera
resolution (in order to increase the number of pixels on small
surfaces), captured images from angled (rather than overhead)
view, and avoided direct lighting of the assemblies.

2) Pose Estimation: In simulation, we train RL policies
from 6D poses of the parts rather than from RGB images
or point clouds, which would substantially increase compute
requirements. On the other hand, in the real world, we observe
the environment using a single Intel RealSense D435 RGB-D
camera mounted on the wrist of the robot. Thus, in order to
deploy our simulation-trained policies in the real world, we
may consider A) moving simulation towards reality (i.e., dis-
tilling the simulation-trained policies to use RGB-image and/or
point-cloud inputs) or B) moving reality towards simulation

Obs. Noise Observation Noise RL Policy Success (%) Follow Trajectory Success (%)Level Pos. (mm) Rot. (deg)

No noise 0 0 95.72±7.39 27.20±26.04
0.5x Baseline [−1, 1] [−2.5, 2.5] 94.36±8.89 26.05±24.66
Baseline [−2, 2] [−5.0, 5.0] 94.12±10.31 23.25±21.83
1.5x Baseline [−3, 3] [−7.5, 7.5] 90.63±9.07 19.42±17.84
2x Baseline [−4, 4] [−10.0, 10.0] 51.24±26.61 13.14±11.20

TABLE VII
SIMULATION-BASED EVALUATION OF SPECIALIST POLICIES WITH DIFFERENT LEVELS OF OBSERVATION NOISE. HERE WE PROVIDE NOISE RANGES

AND QUANTITATIVE DATA CORRESPONDING TO THE PLOTS IN FIGURE S20. BASELINE REFERS TO THE LEVEL OF NOISE UNDER WHICH THE POLICIES
WERE TRAINED. THE LEFT COLUMN LISTS ALL LEVELS OF NOISE UNDER WHICH THE POLICIES WERE TESTED. WE ALSO PROVIDE A COMPARISON WITH

THE FOLLOW TRAJECTORY APPROACH.

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1

No Noise
Minor Noise
Baseline
High Noise
Double Baseline

Observation Noise

Socket Randomization

Plug Randomization

Loading [MathJax]/extensions/MathMenu.js

No Observation Noise 1.5x BaselineBaseline 2x Baseline0.5x Baseline

Su
cc

es
s

Ra
te

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1

00681 00320 00768 00015 00731 01036 00340 01041 00296 01129
0

0.2

0.4

0.6

0.8

1

No Noise
Minor Noise
Baseline
High Noise
Double Baseline

Observation Noise

Socket Randomization

Plug Randomization

Loading [MathJax]/extensions/MathMenu.js

Follow Trajectory

RL Policy

Fig. S20. Simulation-based evaluation of specialist policies with different levels of observation noise. (Bottom) For each assembly, we train our specialist
policies with a baseline level of observation noise. We then evaluate our policies on in-distribution and out-of-distribution levels of observation noise, indicated
by the legend. Table VII provides the specific noise ranges. (Top) For instructive purposes, we also evaluate the Follow Trajectory approach under the same
conditions. For all experiments, we run 5 separate evaluations of 1000 trials each and compute mean success rates.

00320
00015

00731
01129

00340
01041

01036
00768

00681
00296

0

0.2

0.4

0.6

0.8

1

Baseline Finetuned

Asset IDs

S
uc

ce
ss

 R
at

e

Loading [MathJax]/extensions/MathMenu.js

Fig. S21. Simulation-based evaluation of our specialist policies fine-tuned
with higher level of observation noise. For each assembly, we fine-tune the
corresponding specialist policy with twice the amount of observation noise
seen during training; we then evaluate the policies over this larger range. For
each policy, we run 5 separate evaluations of 1000 trials each and compute
mean success rates. We compare to the non-fine-tuned policy.

(i.e., extracting 6D poses from real-world RGB images and/or
point clouds). We choose option B for several reasons: 1) We
can avoid a cross-modal distillation process, 2) Simulated and
real-world RGB images have a substantial sim-to-real gap, 3)
The quality of real-world point clouds is poor on our small,

Fig. S22. Simulation-based evaluation of scaling law for training
generalist policies. We consider batches of {10, 20, ..., 80} assemblies, where
each batch is evenly sampled in t-SNE space (Figure S15). For each batch,
we train a generalist policy with the final AutoMate learning approach, from
all specialists corresponding to that batch of assemblies. We evaluate each
generalist policy over all the assemblies in its corresponding batch over 5000
trials. We observe high success rates for a generalist trained over 10 and 20
assemblies (≈80%), a steep drop at 30 and 40 assemblies (≈55% and ≈30%),
and consistent, low success rates for more assemblies (≈20%).

mildly-reflective parts, and 4) The accuracy of pose estimators
has improved dramatically in recent years [39, 40, 89].

We assume that each part of each assembly has a known
CAD model (specifically, an OBJ file with no associated
texture), which is typical in industrial assembly settings. We
use a pose estimation pipeline that takes as input 1) an RGB-

D image of a part in the real world, 2) the camera intrinsics
matrix, 3) the camera extrinsics matrix, and 4) a CAD model
of the part, and then predicts the 6D pose of the part. This
pose can subsequently be passed as input to our RL policies.

Our pose estimation pipeline consists of the following steps:
1) Image capture: The RealSense camera is used to cap-

ture a 1280 x 720 RGB image and 1280 x 720 depth
image of a part with a known CAD model.

2) Part selection: The RGB image is shown to the user.
The user can left-click on the part to provide a positive
annotation (i.e., a pixel that lies on the part of interest).

3) Segmentation: The RGB image, pixel location(s), and
annotation(s) are passed to [38], which produces a high-
accuracy segmentation mask for the part.

4) Refinement (optional): If the mask does not span the
part, the user can provide another positive annotation;
conversely, if the mask includes background features, the
user can right-click to provide a negative annotation (i.e.,
a pixel that does not correspond to the part). Segmenta-
tion is then executed with the additional annotations.

5) Model-based estimation: The RGB image, depth im-
age, camera intrinsics, segmentation mask, and texture-
less CAD model are fed to [89], which regresses to the
6D object pose in the camera frame.

6) Frame transformation: The 6D object pose in the
camera frame is combined with the camera extrinsics
to compute the 6D object pose in the robot frame.

In total, the steps above take ≈20 seconds to execute.
Future work may focus on replacing the click-based inter-

face for selecting parts with a language interface, using faster
implementations of the segmentation model (e.g., [99, 95]),
automatically retrieving the appropriate CAD model from a
database, and optimizing [89] for faster performance.

As first described in Section III, our real-world system
consists of a Franka robot with a parallel-jaw gripper, a wrist-
mounted RealSense D435 camera, a Schunk EGK40 parallel-
jaw gripper mounted to the tabletop, and 3D-printed assem-
blies from our dataset (Figure S11). Our communications
framework is closely modeled after [77]; however, our per-
ception, grasping, and control procedures differ significantly.

For perception, we aim to estimate plug and socket states
while initializing them in a far less-constrained manner. We
use a powerful segmentation tool [38], textureless CAD mod-
els of our parts, and a state-of-the-art pose estimator [89] to
estimate the 6-DOF poses of each part from RGB-D images.
Figure S23 shows our pipeline; for details, see Appendix N.

O. Results: Robustness of Sim-to-Real Transfer to Observa-
tion Noise

Image noise: We train a state-based policy in simulation,
use a pose estimator in the real world, and achieve high success
rates for the perception-initialized assembly task; thus, our
policies are robust to inaccuracies of the pose estimator.

Nevertheless, we evaluate whether our pose estimator would
perform well under more adverse conditions. For 5 different
assemblies, we record images, apply 3 types of augmentation

(brightness perturbation, contrast perturbation, and Gaussian
noise), and run the pose estimator. Figure S25 illustrates the
results; the estimator is highly robust to image noise.

Control noise: We use a torque-controlled robot, implement
a task-space impedance controller to generate torques, and
achieve high success rates for the assembly task; thus, our
policies are robust to errors in our controller.

Nevertheless, we evaluate whether our policies are robust
to additional control error. For 5 different assemblies, we
simulate additional error by randomly perturbing the control
target by +-2 mm along the x, y, and z axes and +-5 deg
on roll, pitch and yaw at every timestep. We run 10 trials for
each assembly. Table VIII provides our results. Even with
additional control noise, our system maintains high success
rates. We anticipate that performance would degrade at even
higher levels of control noise; however, such levels of noise
may be unrealistic for our hardware and application.

Success Rate
Assembly ID No Control Noise Control Noise

00340 10/10 8/10
00296 8/10 9/10
00731 8/10 9/10
01129 10/10 9/10
00320 10/10 10/10

TABLE VIII
REAL-WORLD EVALUATION OF SPECIALIST POLICIES WITH ADDED

CONTROL NOISE. WE DEPLOY OUR SPECIALIST POLICIES FOR 5
ASSEMBLIES, WITH 10 TRIALS PER ASSEMBLY. DURING EACH TRIAL, WE
ADD +-2 MM OF CONTROL NOISE TO THE x, y, AND z AXES, AS WELL AS

+-5 DEG TO ROLL, PITCH, AND YAW. WE COMPARE TO DEPLOYMENTS
UNDER NO ADDED NOISE.

P. Results: Robustness of Sim-to-Real Transfer to Initial-Pose
Randomization

Success Rate
Assembly ID Baseline 1.5x Baseline

00340 100.0% (10/10) 80.0% (36/45)
00296 80.0% (8/10) 62.2% (28/45)
00731 80.0% (8/10) 73.3% (33/45)
01129 100.0% (10/10) 75.6% (34/45)
00320 100.0% (10/10) 95.6% (43/45)

TABLE IX
REAL-WORLD EVALUATION OF SPECIALIST POLICIES WITH

INCREASED INITIAL-POSE RANDOMIZATION. WE DEPLOY OUR
SPECIALIST POLICIES FOR 5 ASSEMBLIES, WITH 45 NEW TRIALS PER

ASSEMBLY. WE DIVIDE THE WORKSPACE INTO A 3 × 3 GRID; FOR EACH
GRID CELL, WE RUN 5 TRIALS FOR THE CORRESPONDING SPECIALIST

POLICY WHILE APPLYING 1.5X THE INITIAL PLUG-POSE RANDOMIZATION
SEEN DURING TRAINING. WE COMPARE TO TESTING OVER THE

IN-DISTRIBUTION RANGE.

We evaluate our specialist policies in the real world with
different levels of initial plug- and socket-pose randomization
for 5 assemblies. Specifically, for each assembly, we divide the
robot’s workspace into a 3 × 3 grid on the xy-plane; for each
grid cell, we run 5 trials for the corresponding specialist policy
while applying 1.5x the plug-pose randomization seen in
training. (See Table VI for randomization bounds.) Table IX
provides the success rates. Similar to simulated analogues, the
policies moderately degrade when out-of-distribution.

Object Mesh

Segment Anything

Image Capture Segmentation Pose Estimation

User

Raw RGB

Raw Depth

Select part of interest

Pixel coordinates
from user click

Current Segmentation

Mask does not
cover the part of interest

Mask covers
 the part of interest

Final Segmentation

Raw Depth

FoundationPose
6D Pose Estimate

Raw RGB

Wrist-mounted
RGB-D Camera Positive annotation

from user click

Fig. S23. Real-world perception pipeline. Left: At the beginning of our pipeline, we use an Intel RealSense D435 RGB-D camera mounted on the wrist
of the robot to capture an RGB image and depth image. Middle: We show the RGB image to the user, who clicks on the plug or socket of interest. We
then pass the RGB image and pixel coordinates through a powerful segmentation tool [38] and compute a segmentation mask for the plug or socket. Right:
We pass the RGB image, depth image, segmentation mask, and CAD model for the plug or socket into a state-of-the-art pose estimator [89] to estimate the
6-DOF pose of the part in the camera frame. We later use robot kinematics and camera extrinsics to convert the pose to the robot frame.

00004

00007

00014

00015

00016

00021

00028

00030

00032

00042

00062

00074

00077

00078

00081

00083

00103

00110

00117

00133

00138

00141

00143

00163

00175

00186

00187

00190

00192

00210

00211

00213

00255

00256

00271

00293

00296

00301

00308

00318

00319

00320

00329

00340

00345

00346

00360

00388

00410

00417

00422

00426

00437

00444

00446

00470

00471

00480

00486

00499

00506

00514

00537

00553

00559

00581

00597

00614

00615

00638

00648

00649

00652

00659

00681

00686

00700

00703

00726

00731

00741

00755

00768

00783

00831

00855

00860

00863

01026

01029

01036

01041

01053

01079

01092

01102

01125

01129

01132

01136

Fig. S24. Assembly lookup chart. For each assembly investigated in this work, we provide its unique assembly ID and a rendering. The assemblies are
the same as those visualized in Figure 2. The asset IDs are referenced in figures throughout this paper.

Original Gaussian Noise (=0.1)σ 1.2x Brightness 1.5x Contrast0.8x Brightness 0.75x Contrast

00
29

6
00

32
0

00
34

0
00

73
1

01
12

9

Fig. S25. Qualitative real-world evaluation of pose estimator with additional image noise. For 5 different assemblies, we record camera images, apply
3 types of image augmentation (brightness, contrast, and Gaussian noise), and run the pose estimator. The images show the augmented images, as well as
green lines denoting the contours of the plug-and-socket CAD models in the estimated poses. The estimates are accurate and stable across perturbations.

	Introduction
	Related Works
	Assembly Datasets and Environments
	Learning Specialist Assembly Policies
	Learning Generalist Assembly Policies
	Sim-to-Real Transfer for Assembly

	Problem Description
	Dataset and Environments
	Assembly Dataset
	Assembly Environments

	Learning Methods
	Specialist Learning: Assembly-by-Disassembly
	Specialist Learning: RL with Imitation Objective
	Specialist Learning: Trajectory Matching via Dynamic Time Warping and Signature Transforms
	Generalist Learning: Geometric Encoding, Policy Distillation, and Curriculum-based RL Fine-tuning

	Specialist and Generalist Policies
	Evaluations of Specialist Policies
	Evaluation of Generalist Policy

	Sim-to-Real Transfer
	Real-World System Design
	Real-World Policy Evaluations
	Real-World Perception-Initialized Evaluation

	Conclusions
	Appendix
	Problem Description: Real-World Experimental Setup
	Problem Description: Formal Problem Statement
	Methods: Mesh Preprocessing
	Methods: Grasp Optimization
	Methods: Disassembly Path Generation
	Methods: Reinforcement Learning
	Methods: Dynamic Time Warping
	Methods: Signature Transform
	Methods: Point-Cloud Autoencoder
	Results: Specialist Policies (Continued)
	Results: Robustness of Specialist Policies to Initial-Pose Randomization in Simulation
	Results: Robustness of Specialist Policies to Observation Noise in Simulation
	Results: Generalist Policies
	Methods: Perception
	Camera Calibration and Tuning
	Pose Estimation

	Results: Robustness of Sim-to-Real Transfer to Observation Noise
	Results: Robustness of Sim-to-Real Transfer to Initial-Pose Randomization

